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DEFINITION 

“An operating system is a program that manages a computer’s hardware. It also 

provides a basis for application programs and acts as an intermediary between the 

computer user and the computer hardware”. 

 
 

UNIT 1. OPERATING SYSTEM BASICS 

 INTRODUCTION 

The purpose of an operating system is to provide an environment in which a user can 

execute programs in a convenient and efficient manner. An operating system is large and 

complex, it must be created piece by piece. Each of these pieces should be a well-delineated 

portion of the system, with carefully defined inputs, outputs, and functions. An operating 

system is software that manages the computer hardware. The hardware must provide 

appropriate mechanisms to ensure the correct operation of the computer system and to 

prevent user programs from interfering with the proper operation of the system. 

 WORKING OF OPERATING SYSTEM 

A computer system can be divided into four components with hardware, the operating 

system, the application programs, and the users as shown in figure 1.1. 

 

Figure 1.1 - Abstract View of the Components of a Computer System 

The hardware Central Processing Unit (CPU), the Memory, and the Input / Output 

(I/O) devices provides the basic computing resources for the system. The Application 

 



 

 
 

Programs such as word processors, spreadsheets, compilers, and Web browsers define the 

ways in which these resources are used to solve users’ computing problems. A computer 

system as consisting of hardware, software, and data. The operating system provides the 

means for proper use of these resources in the operation of the computer system. 

 COMPUTER SYSTEM ORGANIZATION 

A modern general-purpose computer system consists of one or more CPUs and a 

number of device controllers connected through a common bus that provides access to shared 

memory Figure 1.2. Each device controller is in charge of a specific type of device (for 

example, disk drives, audio devices, or video displays). The CPU and the device controllers 

can execute in parallel, competing for memory cycles. To ensure orderly access to the shared 

memory, a memory controller synchronizes access to the memory. 

 

Figure 1.2 - A Modern Computer System 

When the system is powered up or rebooted it needs to have an initial program to run. 

This initial program, or bootstrap program, tends to be simple. Typically, it is stored within 

the computer hardware in read-only memory (ROM) or electrically erasable programmable 

read-only memory (EEPROM), known by the general term firmware. It initializes all 

aspects of the system, from CPU registers to device controllers to memory contents. The 

bootstrap program must know how to load the operating system and how to start executing 

that system. 

The bootstrap program must locate the operating-system kernel and load it into memory. 

Once the kernel is loaded and executing, it can start providing services to the system and its 



 

 
 

users. Some services are provided outside of the kernel, by system programs that are loaded 

into memory at boot time to become system processes, or system daemons that run the 

entire time the kernel is running. 

 

The occurrence of an event is usually signalled by an interrupt from either the 

hardware or the software. Hardware may trigger an interrupt at any time by sending a signal 

to the CPU, usually by way of the system bus. Software may trigger an interrupt by executing 

a special operation called a system call (also called a monitor call). When the CPU is 

interrupted, it stops what it is doing and immediately transfers execution to a fixed location. 

The fixed location usually contains the starting address where the service routine for the 

interrupt is located. The interrupt service routine executes; on completion, the CPU resumes 

the interrupted computation. 

 
 

 STORAGE STRUCTURES, DEFINITIONS AND NOTATIONS 

All forms of memory provide an array of bytes. Each byte has its own address. 

Interaction is achieved through a sequence of load or store instructions to specific memory 

addresses. The load instruction moves a byte or word from main memory to an internal 

register within the CPU, whereas the store instruction moves the content of a register to main 

memory. 

Bit – basic unit 1 or 0 
 
 

Interrupt is a signal that gets the attention of the CPU and is usually generated when 

I/O is required”. 

A System Call is the programmatic way in which a computer program requests a 

service from the kernel of the operating system it is executed on. It provides an 

interface between a process and operating system to allow user-level processes to 

 

A Kernel is a central component of an operating system. It acts as an interface 

between the user applications and the hardware. 

Booting is a start-up sequence that starts the operating system of a computer when it is 

turned on. 

A Bootstrap is the program that initializes the Operating System (OS) during start-up 

which initiates the smaller program that executed a larger program such as the OS. 



 

 
 

Byte – 8 bits 

Kilobyte (KB) – 1024 bytes 

Megabyte (MB) -- 10242 bytes 

Gigabyte (GB) – 10243 bytes 

Terabyte (TB) – 10244 bytes 

Petabyte (PB) – 10245 bytes 

A typical instruction–execution cycle, as executed on a system with a Von Neumann 

architecture, first fetches an instruction from memory and stores that instruction in the 

instruction register. The instruction is then decoded and may cause operands to be fetched 

from memory and stored in some internal register. After the instruction on the operands has 

been executed, the result may be stored back in memory. Each storage system provides the 

basic functions of storing a datum and holding that datum until it is retrieved at a later time. 

The main differences among the various storage systems lie in speed, cost, size, and 

volatility. The wide variety of storage systems can be organized in a hierarchy Figure1.3 

according to speed and cost. 

 
 

Figure 1.3 - Storage-device hierarchy 

 I/O STRUCTURES 

A general-purpose computer system consists of CPUs and multiple device controllers 

that are connected through a common bus. Each device controller is in charge of a specific 

type of device. Depending on the controller, more than one device may be attached. Seven or 

more devices can be attached to the small computer-systems interface (SCSI) controller. A 

 



 

 
 

device controller maintains some local buffer storage and a set of special-purpose registers. 

The device controller is responsible for moving the data between the peripheral devices that it 

controls and its local buffer storage. Typically, operating systems have a device driver for 

each device controller. This device driver understands the device controller and provides the 

rest of the operating system with a uniform interface to the device. To start an I/O operation, 

the device driver loads the appropriate registers within the device controller. 

The device controller, in turn, examines the contents of these registers to determine what 

action to take (such as “read a character from the keyboard”). The controller starts the 

transfer of data from the device to its local buffer. Once the transfer of data is complete, the 

device controller informs the device driver via an interrupt that it has finished its operation. 

The device driver then returns control to the operating system, possibly returning the data or a 

pointer to the data if the operation was a read. For other operations, the device driver returns 

status information. This form of interrupt-driven I/O is fine for moving small amounts of data 

but can produce high overhead when used for bulk data movement such as disk I/O. 

 

To solve this problem, Direct Memory Access (DMA) is used. After setting up buffers, 

pointers, and counters for the I/O device, the device controller transfers an entire block of 

data directly to or from its own buffer storage to memory, with no intervention by the CPU. 

Only one interrupt is generated per block, to tell the device driver that the operation has 

completed, rather than the one interrupt per byte generated for low-speed devices. While the 

device controller is performing these operations, the CPU is available to accomplish other 

work. Some high-end systems use switch rather than bus architecture. On these systems, 

multiple components can talk to other components concurrently, rather than competing for 

cycles on a shared bus. The DMA is shown more effectively in Figure 1.4 which shows the 

interplay of all components of a computer system. 

 

 

 

 

 

Direct Memory Access (DMA) is a method that allows an input/output (I/O) device to 

send or receive data directly to or from the main memory, bypassing the CPU to speed 

up memory operations. The process is managed by a chip known as a DMA controller 

(DMAC). 



 

 
 

 

 

Figure 1.4 Working of computer systems 

Operating systems can be classified as follows: 

Multi-user: is the one that concede two or more users to use their programs at the same time. 

Some of O.S permits hundreds or even thousands of users simultaneously. 

Single-User: just allows one user to use the programs at one time. 

Multiprocessor: Supports opening the same program more than just in one CPU. 

Multitasking: Allows multiple programs running at the same time. 

Single-tasking: Allows different parts of a single program running at any one time. 

Real time: Responds to input instantly. Operating systems such as DOS and UNIX, do not 

work in real time. 

Here is a list of common services offered by an almost all operating systems: 

• User Interface 

• Program Execution 

• File system manipulation 

• Input / Output Operations 

• Communication 

• Resource Allocation 

• Error Detection 

• Accounting 

• Security and protection 

 

 

 

 

 



 

 
 

 

 COMPUTER-SYSTEM ARCHITECTURE 

A computer system can be organized in a number of different ways, which we can 

categorize roughly according to the number of general-purpose processors used. Different 

types of Operating Systems for Different Kinds of Computer Environments are classified as 

• Single processor system 

• Multiprocessor system 

• Clustered systems 

 SINGLE PROCESSOR SYSTEM 

On a single processor system, there is one main CPU capable of executing a general- 

purpose instruction set, including instructions from user processes. Almost all single 

processor systems have other special-purpose processors as well. They may come in the form 

of device-specific processors, such as disk, keyboard, and graphics controllers; or, on 

mainframes, they may come in the form of more general-purpose processors, such as I/O 

processors that move data rapidly among the components of the system. All of these special 

purpose processors run a limited instruction set and do not run user processes. 

 MULTIPROCESSOR SYSTEM 

Multiprocessor Systems (also known as parallel systems or multicore systems have 

two or more processors for communication, sharing the computer bus and the clock, memory, 

and peripheral devices. Multiprocessor systems first appeared in servers and now it have 

migrated to desktop and laptop systems. Multiple processors have appeared on mobile 

devices such as smartphones and tablet computers also. Multiprocessor systems have three 

main advantages: 

1. Increased throughput. By increasing the number of processors, we expect to get more 

work done in less time. 

2. Economy of scale. Multiprocessor systems can cost less than equivalent multiple single- 

processor systems, because they can share peripherals, mass storage, and power supplies. If 

several programs operate on the same set of data, it is cheaper to store those data on one disk 

and to have all the processors share them than to have many computers with local disks and 

many copies of the data. 

3. Increased reliability. If functions can be distributed properly among several processors, 

then the failure of one processor will not halt the system, only slow it down. If we have ten 

processors and one fails, then each of the remaining nine processors can pick up a share of 



 

 
 

the work of the failed processor. Thus, the entire system runs only 10 percent slower, rather 

than failing altogether. Increased reliability of a computer system is crucial in many 

applications. The ability to continue providing service proportional to the level of surviving 

hardware is called graceful degradation. Some systems go beyond graceful degradation and 

are called fault tolerant, because they can suffer a failure of any single component and still 

continue operation. Fault tolerance requires a mechanism to allow the failure to be detected, 

diagnosed, and, if possible, corrected. 

The multiprocessor systems are classified into two categories and they are 

• Asymmetric multiprocessor 

• Symmetric multiprocessor 

Asymmetric multiprocessor is a processor in which each processor is assigned a specific 

task. This scheme defines a boss–worker relationship. The boss processor schedules and 

allocates work to the worker processors. 

Symmetric multiprocessor (SMP), in which each processor performs all tasks within the 

operating system. SMP means that all processors are peers; no boss–worker relationship 

exists between processors. Figure 1.5 illustrates a typical SMP architecture. Multiprocessing 

adds CPUs to increase computing power. If the CPU has an integrated memory controller, 

then adding CPUs can also increase the amount of memory addressable in the system. 

 

Figure 1.5 - Symmetric multiprocessing architecture 

 CLUSTERED SYSTEMS 

Another type of multiprocessor system is a clustered system in Figure 1.6, which 

gathers together multiple CPUs. Clustered systems differ from the multiprocessor systems 

which are composed of two or more individual systems—or nodes—joined together. Such 

systems are considered loosely coupled. Each node may be a single processor system or a 

multicore system. 



 

 
 

Clustering is usually used to provide high-availability service—that is, service will continue 

even if one or more systems in the cluster fail. Generally, we obtain high availability by 

adding a level of redundancy in the system. A layer of cluster software runs on the cluster 

nodes. Each node can monitor one or more of the others (over the LAN). If the monitored 

machine fails the monitoring machine can take ownership of its storage and restart the 

applications that were running on the failed machine. The users and clients of the applications 

see only a brief interruption of service. Clustering can be structured asymmetrically or 

symmetrically. In asymmetric clustering, one machine is in hot-standby mode while the 

other is running the applications. In symmetric clustering, two or more hosts are running 

applications and are monitoring each other. 

 

Figure 1.6 - General structure of a clustered system 

 OPERATING-SYSTEM STRUCTURE 

One of the most important aspects of operating systems is the ability to multi program. A 

single program cannot be kept either in the CPU or in the I/O devices as the processor will be 

busy at all times. Single users frequently have multiple programs running. 

Multiprogramming increases CPU utilization by organizing jobs (code and data) so that the 

CPU always has one to execute. 

The operating system keeps several jobs in memory simultaneously (Figure 1.7). Since 

main memory is too small to accommodate all jobs, the jobs are kept initially on the disk in 

the job pool. This pool consists of all processes residing on disk awaiting allocation of main 

memory. The set of jobs in memory can be a subset of the jobs kept in the job pool. The 

operating system picks and begins to execute one of the jobs in memory. Eventually, the job 

may have to wait for some task, such as an I/O operation, to complete. 

In a non-multiprogrammed system, the CPU would sit idle. In a multiprogrammed 

system, the operating system simply switches to, and executes, another job. When that job 



 

 
 

needs to wait, the CPU switches to another job, and so on. Eventually, the first job finishes 

waiting and gets the CPU back. 

 

Figure 1.7 - Memory layout for a multiprogramming system 

A time-sharing (multi-user multi-tasking) OS requires: 

• Memory management 

• Process management 

• Job scheduling 

• Resource allocation strategies 

• Swap space / virtual memory in physical memory 

• Interrupt handling 

• File system management 

• Protection and security 

• Inter-process communications 

Time sharing (or multitasking) is a logical extension of multiprogramming. In time-sharing 

systems, the CPU executes multiple jobs by switching among them, but the switches occur so 

frequently that the users can interact with each program while it is running. Time sharing 

requires an interactive computer system, which provides direct communication between the 

user and the system. The user gives instructions to the operating system or to a program 

directly, using a input device such as a keyboard, mouse, touch pad, or touch screen, and 

waits for immediate results on an output device. Accordingly, the response time should be 

short—typically less than one second. A time-shared operating system allows many users to 

share the computer simultaneously. A time-shared operating system uses CPU scheduling and 

 

 



 

A program loaded into memory and executing is called a process. 

 
 

multiprogramming to provide each user with a small portion of a time-shared computer. Each 

user has at least one separate program in memory. 

Time sharing and multiprogramming require that several jobs be kept simultaneously in 

memory. If several jobs are ready to be brought into memory and if there is not enough room 

for all of them, then the system must choose among them. Making this decision involves Job 

Scheduling. When the operating system selects a job from the job pool, it loads that job into 

memory for execution. Having several programs in memory at the same time requires some 

form of memory management. In addition, if several jobs are ready to run at the same time, 

the system must choose which job will run first. Making this decision is CPU Scheduling. 

Finally, running multiple jobs concurrently requires that their ability to affect one another be 

limited in all phases of the operating system, including process scheduling, disk storage, and 

memory management. 

The main advantage of the virtual-memory scheme is that it enables users to run 

programs that are larger than actual Physical Memory. Further, it abstracts main memory 

into a large, uniform array of storage, separating Logical Memory as viewed by the user 

from physical memory. This arrangement frees programmers from concern over memory- 

storage limitations. 

 OPERATING-SYSTEM OPERATIONS 

Modern operating systems are interrupt driven. If there are no processes to execute, no 

I/O devices to service, and no users to whom to respond, an operating system will sit quietly, 

waiting for something to happen. Events are almost always signalled by the occurrence of an 

interrupt or a trap. A trap (or an exception) is a software-generated interrupt caused either by 

an error (for example, division by zero or invalid memory access) or by a specific request 

from a user program that an operating-system service be performed. 

The interrupt-driven nature of an operating system defines that system’s general 

structure. For each type of interrupt, separate segments of code in the operating system 

determine what action should be taken. An interrupt service routine is provided to deal with 

the interrupt. Since the operating system and the users share the hardware and software 

resources of the computer system, we need to make sure that an error in a user program could 

cause problems only for the one program running. 



 

 
 

With sharing, many processes could be adversely affected by a bug in one program. For 

example, if a process gets stuck in an infinite loop, this loop could prevent the correct 

operation of many other processes. More subtle errors can occur in a multiprogramming 

system, where one erroneous program might modify another program, the data of another 

program, or even the operating system itself. Without protection against these sorts of errors, 

either the computer must execute only one process at a time or all output must be suspect. A 

properly designed operating system must ensure that an incorrect (or malicious) program 

cannot cause other programs to execute incorrectly. 

 DUAL-MODE AND MULTIMODE OPERATION 

In order to ensure the proper execution of the operating system, we must be able to 

distinguish between the execution of operating-system code and user defined code. The 

approach taken by most computer systems is to provide hardware support that allows us to 

differentiate among various modes of execution. 

• User mode when executing harmless code in user applications 

• Kernel mode (a.k.a. system mode, supervisor mode, privileged mode) when executing 

potentially dangerous code in the system kernel. 

• Certain machine instructions (privileged instructions) can only be executed in kernel 

mode. 

• Kernel mode can only be entered by making system calls. User code cannot flip the 

mode switch. 

• Modern computers support dual-mode operation in hardware, and therefore most 

modern OS support dual-mode operation. 

• The concept of modes can be extended beyond two, requiring more than a single 

mode bit CPUs that support virtualization use one of these extra bits to indicate when 

the virtual machine manager, VMM, is in control of the system. The VMM has more 

privileges than ordinary user programs, but not so many as the full kernel. 

• System calls are typically implemented in the form of software interrupts, which 

causes the hardware's interrupt handler to transfer control over to an appropriate 

interrupt handler, which is part of the operating system, switching the mode bit to 

kernel mode in the process. 

 

 

 



 

 
 

• The interrupt handler checks exactly which interrupt was generated, checks additional 

parameters (generally passed through registers) if appropriate, and then calls the 

appropriate kernel service routine to handle the service requested by the system call. 

• User programs' attempts to execute illegal instructions (privileged or non-existent 

instructions), or to access forbidden memory areas, also generate software interrupts, 

which are trapped by the interrupt handler and control is transferred to the OS, which 

issues an appropriate error message, possibly dumps data to a log file for later 

analysis, and then terminates the offending program. 

 

Figure 1.8 - Transition from user to kernel mode 

We need two separate modes of operation: user mode and kernel mode (also called 

supervisor mode, system mode, or privileged mode). A bit, called the mode bit, is added to 

the hardware of the computer to indicate the current mode: kernel (0) or user (1). With the 

mode bit, we can distinguish between a task that is executed on behalf of the operating 

system and one that is executed on behalf of the user. When the computer system is executing 

on behalf of a user application, the system is in user mode. 

However, when a user application requests a service from the operating system (via a 

system call), the system must transition from user to kernel mode to fulfil the request. This is 

shown in Figure 1.8. This architectural enhancement is useful for many other aspects of 

system operation as well. At system boot time, the hardware starts in kernel mode. The 

operating system is then loaded and starts user applications in user mode. Whenever a trap or 

interrupt occurs, the hardware switches from user mode to kernel mode (that is, changes the 

state of the mode bit to 0). Thus, whenever the operating system gains control of the 

computer, it is in kernel mode. The system always switches to user mode (by setting the 

mode bit to 1) before passing control to a user program. The dual mode of operation provides 

us with the means for protecting the operating system from errant users—and errant users 

from one another. We accomplish this protection by designating some of the machine 

instructions that may cause harm as privileged instructions. 



 

 
 

The hardware allows privileged instructions to be executed only in kernel mode. If an 

attempt is made to execute a privileged instruction in user mode, the hardware does not 

execute the instruction but rather treats it as illegal and traps it to the operating system. 

 TIMER 

The operating system maintains control over the CPU. We cannot allow a user 

program to get stuck in an infinite loop or to fail to call system services and never return 

control to the operating system. To accomplish this goal, we can use a timer. A timer can be 

set to interrupt the computer after a specified period. The period may be fixed (for example, 

1/60 second) or variable (for example, from 1 millisecond to 1 second). 

A variable timer is generally implemented by a fixed-rate clock and a counter. The 

operating system sets the counter. Every time the clock ticks, the counter is decremented. 

When the counter reaches 0, an interrupt occurs. For instance, a 10-bit counter with a 1- 

millisecond clock allows interrupts at intervals from 1 millisecond to 1,024 milliseconds, in 

steps of 1 millisecond. Before turning over control to the user, the operating system ensures 

that the timer is set to interrupt. If the timer interrupts, control transfers automatically to the 

operating system, which may treat the interrupt as a fatal error or may give the program more 

time. Clearly, instructions that modify the content of the timer are privileged. We can use the 

timer to prevent a user program from running too long. 

A simple technique is to initialize a counter with the amount of time that a program is 

allowed to run. A program with a 7-minute time limit, for example, would have its counter 

initialized to 420. Every second, the timer interrupts, and the counter is decremented by 1. As 

long as the counter is positive, control is returned to the user program. When the counter 

becomes negative, the operating system terminates the program for exceeding the assigned 

time limit. 

 PROCESS MANAGEMENT 

A program does nothing unless its instructions are executed by a CPU. A program in 

execution, as mentioned, is a process. A time-shared user program such as a compiler is a 

process. A process needs certain resources—including CPU time, memory, files, and I/O 

devices—to accomplish its task. These resources are either given to the process when it is 

created or allocated to it while it is running. 

A program by itself is not a process. A program is a passive entity, like the contents of a 

file stored on disk, whereas a process is an active entity. 

 



 

 
 

A single-threaded process has one program counter specifying the next instruction to 

execute. The execution of such a process must be sequential. The CPU executes one 

instruction of the process after another, until the process completes. 

A multithreaded process has multiple program counters, each pointing to the next instruction 

to execute for a given thread. A process is the unit of work in a system. A system consists of 

a collection of processes, some of which are operating-system processes (those that execute 

system code) and the rest of which are user processes (those that execute user code). All these 

processes can potentially execute concurrently—by multiplexing on a single CPU. 

An OS is responsible for the following tasks with regards to process management: 

• Creating and deleting both user and system processes 

• Ensuring that each process receives its necessary resources, without interfering with 

other processes. 

• Suspending and resuming processes 

• Process synchronization and communication 

• Deadlock handling 

 MEMORY MANAGEMENT 

The main memory is central to the operation of a modern computer system. Main 

memory is a large array of bytes, ranging in size from hundreds of thousands to billions. Each 

byte has its own address. Main memory is a repository of quickly accessible data shared by 

the CPU and I/O devices. The central processor reads instructions from main memory during 

the instruction-fetch cycle and both reads and writes data from main memory during the data- 

fetch cycle. 

For a program to be executed, it must be mapped to absolute addresses and loaded into 

memory. As the program executes, it accesses program instructions and data from memory  

by generating these absolute addresses. Eventually, the program terminates, its memory space 

is declared available, and the next program can be loaded and executed. To improve both the 

utilization of the CPU and the speed of the computer’s response to its users, general-purpose 

computers must keep several programs in memory, creating a need for memory management. 

An OS is responsible for the following tasks with regards to memory management: 

• Keeping track of which blocks of memory are currently in use, and by which 

processes. 

 



 

 
 

• Determining which blocks of code and data to move into and out of memory, and 

when. 

• Allocating and deallocating memory as needed. ( E.g. new, malloc ) 

 STORAGE MANAGEMENT 

 FILE-SYSTEM MANAGEMENT 

An OS is responsible for the following tasks with regards to filesystem management: 

• Creating and deleting files and directories 

• Supporting primitives for manipulating files and directories. (open, flush, etc. ) 

• Mapping files onto secondary storage. 

• Backing up files onto stable permanent storage media. 

 MASS-STORAGE MANAGEMENT 

An OS is responsible for the following tasks with regards to mass-storage management: 

• Free disk space management 

• Storage allocation 

• Disk scheduling 

Note the trade-offs regarding size, speed, longevity, security, and re-writable between 

different mass storage devices, including floppy disks, hard disks, tape drives, CDs, 

DVDs, etc. 

 CACHING 

• There are many cases in which a smaller higher-speed storage space serves as a cache, 

or temporary storage, for some of the most frequently needed portions of larger 

slower storage areas. 

• The hierarchy of memory storage ranges from CPU registers to hard drives and 

external storage is reflected in Table 1. 

• The OS is responsible for determining what information to store in what level of 

cache, and when to transfer data from one level to another. 

Table 1. Performance of various levels of storage 
 

 

 

 

 

 

 

 

 



 

 
 

 

• The proper choice of cache management can have a profound impact on system 

performance. 

• Data read in from disk follows a migration path from the hard drive to main memory, 

then to the CPU cache, and finally to the registers before it can be used, while data 

being written follows the reverse path. Each step (other than the registers) will 

typically fetch more data than is immediately needed, and cache the excess in order to 

satisfy future requests faster. For writing, small amounts of data are frequently 

buffered until there is enough to fill an entire "block" on the next output device in the 

chain. 

• The issues get more complicated when multiple processes (or worse multiple 

computers) access common data, as it is important to ensure that every access reaches 

the most up-to-date copy of the cached data (amongst several copies in different cache 

levels.) 

In a hierarchical storage structure, the same data may appear in different levels of the 

storage system. For example, suppose that an integer A that is to be incremented by 1 is 

located in file B, and file resides on magnetic disk. The increment operation proceeds by 

first issuing an I/O operation to copy the disk block on which A resides to main memory. 

This operation is followed by copying A to the cache and to an internal register. Thus, 

the copy of A appears in several places: on the magnetic disk, in main memory, in the 

cache, and in an internal register shown in Figure 1.9. Once the increment takes place in 

the internal register, the value of A differs in the various storage systems. The value of A 

becomes the same only after the new value of A is written from the internal register back 

to the magnetic disk. 

 

 
 



 

 
 

 

Figure 1.9 - Migration of integer A from disk to register 

 I/O SYSTEMS 

The I/O subsystem consists of several components: 

• A memory-management component that includes buffering, caching, and spooling. 

• A general device-driver interface. 

• Drivers for specific hardware devices. 

• (UNIX implements multiple device interfaces for many types of devices, one for 

accessing the device character by character and one for accessing the device block by 

block. These can be seen by doing a long listing of /dev, and looking for a "c" or "b" 

in the first position. You will also note that the "size" field contains two numbers, 

known as the major and minor device numbers, instead of the normal one. The major 

number signifies which device driver handles I/O for this device, and the minor 

number is a parameter passed to the driver to let it know which specific device is 

being accessed. Where a device can be accessed as either a block or character device, 

the minor numbers for the two options usually differ by a single bit. ) 

 PROTECTION AND SECURITY 

• Protection involves ensuring that no process access or interfere with resources to 

which they are not entitled, either by design or by accident. (E.g. "protection faults" 

when pointer variables are misused.) 

• Security involves protecting the system from deliberate attacks, either from legitimate 

users of the system attempting to gain unauthorized access and privileges, or external 

attackers attempting to access or damage the system. 

KERNAL DATA STRUCTURES 

 LISTS, STACKS, AND QUEUES 

An array is a simple data structure in which each element can be accessed directly. 

Each item in an array can be accessed directly, the items in a list must be accessed in a 

particular order. That is, a list represents a collection of data values as a sequence. The most 

common method for implementing this structure is a linked list, in which items are linked to 

one another. Linked lists are of several types: 



 

 
 

• In a singly linked list, each item points to its successor, as illustrated in Figure 1.10. 
 

Figure 1.10 - Singly linked list 

• In a doubly linked list, a given item can refer either to its predecessor or to its successor, as 

illustrated in Figure 1.11. 

 

Figure 1.11 - Doubly linked list 

• In a circularly linked list, the last element in the list refers to the first element, rather than to 

null, as illustrated in Figure 1.12. 

 

Figure 1.12 - Circularly linked list 

Linked lists accommodate items of varying sizes and allow easy insertion and deletion of 

items. 

A stack is a sequentially ordered data structure that uses the last in, first out (LIFO) 

principle for adding and removing items, meaning that the last item placed onto a stack is the 

first item removed. The operations for inserting and removing items from a stack are known 

as push and pop, respectively. An operating system often uses a stack when invoking 

function calls. Parameters, local variables, and the return address are pushed onto the stack 

when a function is called; returning from the function call pops those items off the stack. 

A queue, in contrast, is a sequentially ordered data structure that uses the first in, first 

out (FIFO) principle: items are removed from a queue in the order in which they were 

inserted. There are many everyday examples of queues, including shoppers waiting in a 

checkout line at a store and cars waiting in line at a traffic signal. Queues are also quite 

common in operating systems—jobs that are sent to a printer are typically printed in the order 

in which they were submitted. 

 



 

 
 

 TREES 

A tree is a data structure that can be used to represent data hierarchically. Data values 

in a tree structure are linked through parent–child relationships. In a general tree, a parent 

may have an unlimited number of children. In a binary tree, a parent may have at most two 

children, which we term the left child and the right child. A binary search tree additionally 

requires an ordering between the parent’s two children in which le f t child <= right child. 

Figure 1.13 provides an example of a binary search tree. 

 

Figure 1.13 - Binary search trees 

 COMPUTING ENVIRONMENTS 

Operating systems are used in a variety of computing environments such as 

• Traditional computing 

• Distributed computing 

• Mobile computing 

• Client server computing 

• Peer to peer computing 

• Virtualization 

• Cloud computing 

• Real time embedded systems 

 TRADITIONAL COMPUTING 

PCs connected to a network, with servers providing file and print services. Remote 

access was awkward, and portability was achieved by use of laptop computers. Terminals 

attached to mainframes were prevalent at many companies as well, with even fewer remote 

access and portability options. The current trend is toward providing more ways to access 

these computing environments. Web technologies and increasing WAN bandwidth are 

stretching the boundaries of traditional computing. Companies establish portals, which 

 



 

 
 

provide Web accessibility to their internal servers. Network computers (or thin clients) 

which are essentially terminals that understand web-based computing—are used in place of 

traditional workstations where more security or easier maintenance is desired. 

 MOBILE COMPUTING 

• Computing on small handheld devices such as smart phones or tablets. (As opposed to 

laptops, which still fall under traditional computing) 

• May take advantage of additional built-in sensors, such as GPS, tilt, compass, and 

inertial movement. 

• Typically connect to the Internet using wireless networking (IEEE 802.11) or cellular 

telephone technology. 

• Limited in storage capacity, memory capacity, and computing power relative to a PC. 

• Generally uses slower processors that consume less battery power and produce less 

heat. 

• The two dominant OSes today are Google Android and Apple iOS. 

 DISTRIBUTED SYSTEMS 

• Distributed Systems consist of multiple, possibly heterogeneous, computers connected 

together via a network and cooperating in some way, form, or fashion. 

• Networks may range from small tight LANs to broad reaching WANs. 

o WAN = Wide Area Network, such as an international corporation 

o MAN =Metropolitan Area Network, covering a region the size of a city for 

example. 

o LAN =Local Area Network, typical of a home, business, single-site 

corporation, or university campus. 

o PAN = Personal Area Network, such as the bluetooth connection between 

your PC, phone, headset, car, etc. 

• Network access speeds, throughputs, reliabilities, are all important issues. 

• OS view of the network may range from just a special form of file access to complex 

well-coordinated network operating systems. 

• Shared resources may include files, CPU cycles, RAM, printers, and other resources. 

 CLIENT-SERVER COMPUTING 

• A defined server provides services (HW or SW) to other systems which serve as 

clients. The Figure 1.14 reflects the general structure of a client server system. 

 



 

 
 

• A process may act as both client and server of either the same or different resources. 

• Served resources may include disk space, CPU cycles, time of day, IP name 

information, graphical displays (X Servers), or other resources. 

 

Figure 1.14 - General structure of a client-server system 

 Peer-to-Peer Computing 

• Any computer or process on the network may provide services to any other which 

requests it. The Figure 1.15 shows the peer to peer computing. 

• May employ a central "directory" server for looking up the location of resources, or 

may use peer-to-peer searching to find resources. 

• E.g. Skype uses a central server to locate a desired peer, and then further 

communication is peer to peer. 

 

Figure 1.15 - Peer-to-peer system with no centralized service 

 VIRTUALIZATION 

• Allows one or more "guest" operating systems to run on virtual machines hosted by a 

single physical machine and the virtual machine manager. 

• Useful for cross-platform development and support. 

• For example, a student could run UNIX on a virtual machine, hosted by a virtual 

machine manager on a Windows based personal computer. The student would have 

full root access to the virtual machine, and if it crashed, the underlying Windows 

machine should be unaffected. 



 

 
 

• System calls have to be caught by the VMM and translated into (different) system 

calls made to the real underlying OS. 

• Virtualization can slow down program that have to run through the VMM, but can 

also speed up some things if virtual hardware can be accessed through a cache instead 

of a physical device this is shown in Figure 1.16. 

• Depending on the implementation, programs can also run simultaneously on the 

native OS, bypassing the virtual machines. 

 
 

Figure 1.16 - VMWare 

 CLOUD COMPUTING 

• Delivers computing, storage, and applications as a service over a network. 

• Types of cloud computing: 

o Public cloud - Available to anyone willing to pay for the service. 

o Private cloud - Run by a company for internal use only. 

o Hybrid cloud - A cloud with both public and private components. 

o Software as a Service - SaaS - Applications such as word processors 

available via the Internet 

o Platform as a Service - PaaS - A software stack available for application use, 

such as a database server 

o Infrastructure as a Service - IaaS - Servers or storage available on the 

Internet, such as backup servers, photo storage, or file storage. 

o Service providers may provide more than one type of service 
 



 

 
 

• Clouds may contain thousands of physical computers, millions of virtual ones, and 

petabytes of total storage. In Figure 1.17 cloud computing environment is shown. 

• Web hosting services may offer (one or more) virtual machine(s) to each of their 

clients. 

 

Figure 1.17 - Cloud computing 

 Real-Time Embedded Systems 

• Embedded into devices such as automobiles, climate control systems, process control, 

and even toasters and refrigerators. 

• May involve specialized chips, or generic CPUs applied to a particular task. Process 

control devices require real-time (interrupt driven) OS. Response time can be critical 

for many such devices. 

2. OPERATING SYSTEM STRUCTURES 

An operating system provides the environment within which programs are executed. 

Internally, operating systems vary greatly in their makeup, since they are organized along 

many different lines. The design of a new operating system is a major task. It is important 

that the goals of the system be well defined before the design begins. These goals form the 

basis for choices among various algorithms and strategies. 

 SERVICES OF OPERATING SYSTEMS 

An operating system provides an environment for the execution of programs. It 

provides certain services to programs and to the users of those programs. The specific 

services provided, of course, differ from one operating system to another, but we can identify 

common classes. These operating system services are provided for the convenience of the 



 

 
 

programmer, to make the programming task easier. Figure 2.1 shows one view of the various 

operating-system services and the communications between them. 

 

Figure 2.1 A View Of Operating System Services. 

User interface. 

Almost all operating systems have a user interface (UI). This interface can take 

several forms. One is a command-line interface (CLI), which uses text commands and a 

method for entering them (say, a keyboard for typing in commands in a specific format with 

specific options). Another is a batch interface, in which commands and directives to control 

those commands are entered into files, and those files are executed. Most commonly, a 

graphical user interface (GUI) is used. Here, the interface is a window system with a 

pointing device to direct I/O, choose from menus, and make selections and a keyboard to 

enter text. Some systems provide two or all three of these variations. 

Program execution. 

The system must be able to load a program into memory and to run that program. The 

program must be able to end its execution, either normally or abnormally (indicating error). 

I/O operations. 

A running program may require I/O, which may involve a file or an I/O device. For 

specific devices, special functions may be desired (such as recording to a CD or DVD drive 

or blanking a display screen). For efficiency and protection, users usually cannot control I/O 

devices directly. Therefore, the operating system must provide a means to do I/O. 

File-system manipulation. 



 

 
 

The file system is of particular interest. Obviously, programs need to read and write 

files and directories. They also need to create and delete them by name, search for a given 

file, and list file information. Finally, some operating systems include permissions 

management to allow or deny access to files or directories based on file ownership. Many 

operating systems provide a variety of file systems, sometimes to allow personal choice and 

sometimes to provide specific features or performance characteristics. 

Communications. 

Communication may occur between processes that are executing on the same 

computer or between processes that are executing on different computer systems tied together 

by a computer network. Communications may be implemented via shared memory, in which 

two or more processes read and write to a shared section of memory, or message passing, in 

which packets of information in predefined formats are moved between processes by the 

operating system. 

Error detection. 

The operating system needs to be detecting and correcting errors constantly. Errors 

may occur in the CPU and memory hardware (such as a memory error or a power failure), in 

I/O devices (such as a parity error on disk, a connection failure on a network, or lack of paper 

in the printer), and in the user program (such as an arithmetic overflow, an attempt to access 

an illegal memory location, or a too-great use of CPU time). For each type of error, the 

operating system should take the appropriate action to ensure correct and consistent 

computing. Sometimes, it has no choice but to halt the system. At other times, it might 

terminate an error causing process or return an error code to a process for the process to 

detect and possibly correct. Another set of operating system functions exists not for helping 

the user but rather for ensuring the efficient operation of the system itself. Systems with 

multiple users can gain efficiency by sharing the computer resources among the users. 

Resource allocation. 

When there are multiple users or multiple jobs running at the same time, resources 

must be allocated to each of them. The operating system manages many different types of 

resources. Some (such as CPU cycles, main memory, and file storage) may have special 

allocation code, whereas others (such as I/O devices) may have much more general request 

and release code. For instance, in determining how best to use the CPU, operating systems 

have CPU-scheduling routines that take into account the speed of the CPU, the jobs that must 

 



 

 
 

be executed, the number of registers available, and other factors. There may also be routines 

to allocate printers, USB storage drives, and other peripheral devices. 

Accounting. 

We want to keep track of which users use how much and what kinds of computer 

resources. This record keeping may be used for accounting (so that users can be billed) or 

simply for accumulating usage statistics. Usage statistics may be a valuable tool for 

researchers who wish to reconfigure the system to improve computing services. 

Protection and security. 

The owners of information stored in a multiuser or networked computer system may 

want to control use of that information. When several separate processes execute 

concurrently, it should not be possible for one process to interfere with the others or with the 

operating system itself. Protection involves ensuring that all access to system resources is 

controlled. Security of the system from outsiders is also important. Such security starts with 

requiring each user to authenticate. If a system is to be protected and secure, precautions must 

be instituted throughout it. A chain is only as strong as its weakest link. 

 USER AND OPERATING-SYSTEM INTERFACE 

Operating system has two fundamental approaches. 

1. Command-Line Interface or Command Interpreter that allows users to directly 

enter commands to be performed by the operating system. 

2. Users to interface with the operating system via a Graphical User Interface or 

GUI. 

 COMMAND INTERPRETER 

• Gets and processes the next user request, and launches the requested programs. 

• In some systems the CI may be incorporated directly into the kernel. 

• More commonly the CI is a separate program that launches once the user logs in or 

otherwise accesses the system. 

• UNIX, for example, provides the user with a choice of different shells, Bourne shell, 

C shell, Bourne-Again shell, Korn shell, and others which may either be configured 

to launch automatically at login, or which may be changed on the fly. Figure 2.2 shows 

the Bourne shell command interpreter being used on Solaris 10. 

• Different shells provide different functionality, in terms of certain commands that are 

implemented directly by the shell without launching any external programs. Most 



 

 
 

provide at least a rudimentary command interpretation structure for use in shell script 

programming (loops, decision constructs, variables) 

• An interesting distinction is the processing of wild card file naming and I/O re-

direction. On UNIX systems those details are handled by the shell, and the program 

which is launched sees only a list of filenames generated by the shell from the wild 

cards. On a DOS system, the wild cards are passed along to the programs, which can 

interpret the wild cards as the program sees fit. 

 

Figure 2.2 The Bourne shell command interpreter in Solrais 10. 

 GRAPHICAL USER INTERFACE (GUI) 

A second strategy for interfacing with the operating system is through a user friendly 

graphical user interface, or GUI. Here, rather than entering commands directly via a 

command-line interface, users employ a mouse-based window and- menu system 

characterized by a desktop metaphor. The user moves the mouse to position its pointer on 

images, or icons, on the screen (the desktop) that represent programs, files, directories, and 

system functions. Depending on the mouse pointer’s location, clicking a button on the mouse 

can invoke a program, select a file or directory—known as a folder—or pull down a menu 

that contains commands. 

• Generally implemented as a desktop metaphor, with file folders, trash cans, and 

resource icons. 



 

 
 

• Icons represent some item on the system, and respond accordingly when the icon is 

activated. 

• First developed in the early 1970's at Xerox PARC research facility. 

• In some systems the GUI is just a front end for activating a traditional command line 

interpreter running in the background. In others the GUI is a true graphical shell in its 

own right. 

• Mac has traditionally provided ONLY the GUI interface. With the advent of OSX 

(based partially on UNIX), a command line interface has also become available. 

• Because mice and keyboards are impractical for small mobile devices, these normally 

use a touch-screen interface today that responds to various patterns of swipes or 

"gestures". When these first came out they often had a physical keyboard and/or a 

trackball of some kind built in, but today a virtual keyboard is more commonly 

implemented on the touch screen. 

 CHOICE OF INTERFACE 

The choice of whether to use a command-line or GUI interface is mostly one of 

personal preference System administrators who manage computers and power users who 

have deep knowledge of a system frequently use the command-line interface. It is more 

efficient, giving faster access to the activities needed to perform. Indeed, on some systems, 

only a subset of system functions is available via the GUI, leaving the less common tasks to 

those who are command-line knowledgeable. Further, command line interfaces usually make 

repetitive tasks easier, in part because they have their own programmability. For example, if a 

frequent task requires a set of command-line steps, those steps can be recorded into a file, and 

that file can be run just like a program. The program is not compiled into executable code but 

rather is interpreted by the command-line interface. These shell scripts are very common on 

systems that are command-line oriented, such as UNIX and Linux. 

The user interface can vary from system to system and even from user to user within a 

system. It typically is substantially removed from the actual system structure. The design of a 

useful and friendly user interface is therefore not a direct function of the operating system. In 

this book, we concentrate on the fundamental problems of providing adequate service to user 

programs. From the point of view of the operating system, we do not distinguish between 

user programs and system programs. 

 SYSTEM CALLS 
 



 

 
 

• System calls provide a means for user or application programs to call upon the 

services of the operating system. 

• Generally written in C or C++, although some are written in assembly for optimal 

performance. 

• Figure 2.3 illustrates the sequence of system calls required to copy a file: 
 
 

Figure 2.3 Usage of System Calls 

As an example of a standard API, consider the read () function that is available in UNIX and 

Linux systems. The API for this function is obtained from the man page by invoking the 

command 

man read 

on the command line. A description of this API appears below: 

#include <unistd.h> 

ssize_t read(int fd, void *buf, size_t count) 

A program that uses the read() function must include the unistd.h header file, as this 

file defines the ssize t and size t data types (among other things). The parameters passed to 

read() are as follows: 

• int fd—the file descriptor to be read 

• void *buf—a buffer where the data will be read into 

• size t count—the maximum number of bytes to be read into the 
 

 

 



 

 

Buffer On a successful read, the number of bytes read is returned. A return value of 0 

indicates end of file. If an error occurs, read() returns −1. Figure 2.4 shows the working of the 

parameters for the system calls as a table. 

 

Figure 2.4 - Passing of parameters as a table 

 TYPES OF SYSTEM CALLS 

System calls can be grouped roughly into six major categories: process control, file 

manipulation, device manipulation, information maintenance, communications, and 

protection. 

Most of the system calls support, or supported by, concepts and functions. Figure 2.5 

summarizes the types of system calls normally provided by an operating system. Examples 

are provided for the actual counterparts to the system calls for Windows, UNIX, and Linux 

systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 
 

 

Figure 2.5 Example for UNIX and windows system calls 

 

The example of system calls for UNIX and windows is shown in the Figure 2.6 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

Figure 2.6 Types of System calls 

 

 PROCESS CONTROL 

A running program needs to be able to halt its execution either normally (end()) or 

abnormally (abort()). If a system call is made to terminate the currently running program 

abnormally, or if the program runs into a problem and causes an error trap, a dump of 

memory is sometimes taken and an error message generated. 

The dump is written to disk and may be examined by a debugger—a system program 

designed to aid the programmer in finding and correcting errors, or bugs—to determine the 

cause of the problem. Under either normal or abnormal circumstances, the operating system 

must transfer control to the invoking command interpreter. The command interpreter then 

reads the next command. In an interactive system, the command interpreter simply continues 

 



 

 
 

with the next command; it is assumed that the user will issue an appropriate command to 

respond to any error. 

• Process control system calls include end, abort, load, execute, create process, 

terminate process, get/set process attributes, wait for time or event, signal event, and 

allocate and free memory. 

• Processes must be created, launched, monitored, paused, resumed, and eventually 

stopped. 

• When one process pauses or stops, then another must be launched or resumed 

• When processes stop abnormally it may be necessary to provide core dumps and/or 

other diagnostic or recovery tools. 

• Compare DOS (a single-tasking system ) with UNIX ( a multi-tasking system ). 

o When a process is launched in DOS, the command interpreter first unloads as 

much of itself as it can to free up memory, then loads the process and transfers 

control to it. The interpreter does not resume until the process has completed, 

as shown in Figure 2.7 

 

Figure 2.7 - MS-DOS execution. (a) At system start up. (b) Running a program. 

o Because UNIX is a multi-tasking system, the command interpreter remains 

completely resident when executing a process, as shown in Figure 2.11 

below. 

• The user can switch back to the command interpreter at any time, and can place the 

running process in the background even if it was not originally launched as a 

background process. 

 



 

 
 

• The command interpreter first executes a "fork" system call, which creates a second 

process which is an exact duplicate (clone) of the original command interpreter. The 

original process is known as the parent, and the cloned process is known as the child, 

with its own unique process ID and parent ID. 

• The child process then executes an "exec" system call, which replaces its code with 

that of the desired process. Figure 2.8 shows the FreeBSD running multiple programs. 

• The parent (command interpreter) normally waits for the child to complete before 

issuing a new command prompt, but in some cases it can also issue a new prompt 

right away, without waiting for the child process to complete. (The child is then said 

to be running "in the background", or "as a background process".) 

 

Figure 2.8 - FreeBSD running multiple programs 

 FILE MANAGEMENT 

• File management system calls include create file, delete file, open, close, read, write, 

reposition, get file attributes, and set file attributes. 

• These operations may also be supported for directories as well as ordinary files. 

• (The actual directory structure may be implemented using ordinary files on the file 

system, or through other means. 

 DEVICE MANAGEMENT 

• Device management system calls include request device, release device, read, write, 

reposition, get/set device attributes, and logically attach or detach devices. 

• Devices may be physical (e.g. disk drives), or virtual / abstract ( e.g. files, partitions, 

and RAM disks ). 

 

 

 



 

 
 

• Some systems represent devices as special files in the file system, so that accessing 

the "file" calls upon the appropriate device drivers in the OS. See for example the /dev 

directory on any UNIX system. 

 INFORMATION MAINTENANCE 

• Information maintenance system calls include calls to get/set the time, date, system 

data, and process, file, or device attributes. 

• Systems may also provide the ability to dump memory at any time, single step 

programs pausing execution after each instruction, and tracing the operation of 

programs, all of which can help to debug programs. 

 COMMUNICATION 

• Communication system calls create/delete communication connection, send/receive 

messages, transfer status information, and attach/detach remote devices. 

• The message passing model must support calls to: 

o Identify a remote process and/or host with which to communicate. 

o Establish a connection between the two processes. 

o Open and close the connection as needed. 

o Transmit messages along the connection. 

o Wait for incoming messages, in either a blocking or non-blocking state. 

o Delete the connection when no longer needed. 

• The shared memory model must support calls to: 

o Create and access memory that is shared amongst processes and threads. 

o Provide locking mechanisms restricting simultaneous access. 

o Free up shared memory and/or dynamically allocate it as needed. 

• Message passing is simpler and easier, (particularly for inter-computer 

communications), and is generally appropriate for small amounts of data. 

• Shared memory is faster, and is generally the better approach where large amounts of 

data are to be shared, ( particularly when most processes are reading the data rather 

than writing it, or at least when only one or a small number of processes need to 

change any given data item. ) 

 PROTECTION 

• Protection provides mechanisms for controlling which users / processes have access 

to which system resources. 



 

 
 

• System calls allow the access mechanisms to be adjusted as needed, and for non- 

privileged users to be granted elevated access permissions under carefully controlled 

temporary circumstances. 

• Once only of concern on multi-user systems, protection is now important on all 

systems, in the age of ubiquitous network connectivity. 

 SYSTEM PROGRAMS 

• System programs provide OS functionality through separate applications, which are 

not part of the kernel or command interpreters. They are also known as system 

utilities or system applications. 

• Most systems also ship with useful applications such as calculators and simple  

editors, (e.g. Notepad). Some debate arises as to the border between system and non- 

system applications. 

• System programs may be divided into these categories: 

o File management - programs to create, delete, copy, rename, print, list, and 

generally manipulate files and directories. 

o Status information - Utilities to check on the date, time, number of users, 

processes running, data logging, etc. System registries are used to store and 

recall configuration information for particular applications. 

o File modification - e.g. text editors and other tools which can change file 

contents. 

o Programming-language support - E.g. Compilers, linkers, debuggers, 

profilers, assemblers, library archive management, interpreters for common 

languages, and support for make. 

o Program loading and execution - loaders, dynamic loaders, overlay loaders, 

etc., as well as interactive debuggers. 

o Communications - Programs for providing connectivity between processes 

and users, including mail, web browsers, remote logins, file transfers, and 

remote command execution. 

o Background services - System daemons are commonly started when the 

system is booted, and run for as long as the system is running, handling 

necessary services. Examples include network daemons, print servers, process 

schedulers, and system error monitoring services. 



 

 
 

• Most operating systems today also come complete with a set of application 

programs to provide additional services, such as copying files or checking the time 

and date. 

• Most users' views of the system is determined by their command interpreter and the 

application programs. Most never make system calls through the API, (with the 

exception of simple ( file ) I/O in user-written programs. ) 

 OPERATING-SYSTEM DESIGN AND IMPLEMENTATION 

 DESIGN GOALS 

• Requirements define properties which the finished system must have, and are a 

necessary first step in designing any large complex system. 

o User requirements are features that users care about and understand, and are 

written in commonly understood vernacular. They generally do not include 

any implementation details, and are written similar to the product description 

one might find on a sales brochure or the outside of a shrink-wrapped box. 

o System requirements are written for the developers, and include more details 

about implementation specifics, performance requirements, compatibility 

constraints, standards compliance, etc. These requirements serve as a 

"contract" between the customer and the developers, (and between developers 

and subcontractors), and can get quite detailed. 

• Requirements for operating systems can vary greatly depending on the planned scope 

and usage of the system. (Single user / multi-user, specialized system / general 

purpose, high/low security, performance needs, operating environment, etc.) 

 MECHANISMS AND POLICIES 

• Policies determine what is to be done. Mechanisms determine how it is to be 

implemented. 

• If properly separated and implemented, policy changes can be easily adjusted without 

re-writing the code, just by adjusting parameters or possibly loading new data / 

configuration files. For example the relative priority of background versus foreground 

tasks. 

 

 

 

 

 



 

 
 

 IMPLEMENTATION 

• Traditionally OSes were written in assembly language. This provided direct control 

over hardware-related issues, but inextricably tied a particular OS to a particular HW 

platform. 

• Recent advances in compiler efficiencies mean that most modern OS are written in C, 

or more recently, C++. Critical sections of code are still written in assembly language, 

• Operating systems may be developed using emulators of the target hardware, 

particularly if the real hardware is unavailable or not a suitable platform for 

development, (e.g. smart phones, game consoles, or other similar devices.) 

 OPERATING-SYSTEM STRUCTURE 

For efficient performance and implementation an OS should be partitioned into separate 

subsystems, each with carefully defined tasks, inputs, outputs, and performance 

characteristics. These subsystems can then be arranged in various architectural 

configurations: 

 SIMPLE STRUCTURE 

When DOS was originally written its developers had no idea how big and important it 

would eventually become. It was written by a few programmers in a relatively short 

amount of time, without the benefit of modern software engineering techniques, and then 

gradually grew over time to exceed its original expectations. It does not break the system 

into subsystems, and has no distinction between user and kernel modes, allowing all 

programs direct access to the underlying hardware. (Note that user versus kernel mode 

was not supported by the 8088 chip set anyway, so that really wasn't an option back then.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 
 

 

Figure 2.9 - MS-DOS layer structure 

The original UNIX OS used a simple layered approach, but almost all the OS was in one 

big layer, not really breaking the OS down into layered subsystems: 

 

Figure 2.10 - Traditional UNIX system structure 

 LAYERED APPROACH 

• Another approach is to break the OS into a number of smaller layers, each of 

which rests on the layer below it, and relies solely on the services provided by the 

next lower layer. 

 

 
 



 

 
 

• This approach allows each layer to be developed and debugged independently, 

with the assumption that all lower layers have already been debugged and are 

trusted to deliver proper services. 

• The problem is deciding what order in which to place the layers, as no layer can 

call upon the services of any higher layer, and so many chicken-and-egg situations 

may arise. 

• Layered approaches can also be less efficient, as a request for service from a 

higher layer has to filter through all lower layers before it reaches the HW, 

possibly with significant processing at each step. 

• Figure 2.11 shows the details of the layered operating system. 

• 2.7.3 MICROKERNELS 

• The basic idea behind micro kernels is to remove all non-essential services from 

the kernel, and implement them as system applications instead, thereby making 

the kernel as small and efficient as possible. Most microkernels provide basic 

process and memory management, and message passing between other services, 

and not much more. 

• Security and protection can be enhanced, as most services are performed in user 

mode, not kernel mode. 

 
 

Figure 2.11 - A layered operating system 

System expansion can also be easier, because it only involves adding more system 

applications, not rebuilding a new kernel. Mach was the first and most widely known 

microkernel, and now forms a major component of Mac OSX. 

 



 

 
 

Windows NT was originally microkernel, but suffered from performance problems 

relative to Windows 95. NT 4.0 improved performance by moving more services into the 

kernel, and now XP is back to being more monolithic. Another microkernel example is 

QNX, a real-time OS for embedded systems. 

 

 

Figure 2.12 - Architecture of a typical microkernel 

 MODULES 

• Modern OS development is object-oriented, with a relatively small core kernel and a 

set of modules which can be linked in dynamically. See for example the Solaris 

structure, as shown in Figure 2.13 below. 

• Modules are similar to layers in that each subsystem has clearly defined tasks and 

interfaces, but any module is free to contact any other module, eliminating the 

problems of going through multiple intermediary layers, as well as the chicken-and- 

egg problems. 

• The kernel is relatively small in this architecture, similar to microkernels, but the 

kernel does not have to implement message passing since modules are free to contact 

each other directly. 

 

 

 

 

 

 

 

 



 

 
 

 

Figure 2.13 Solaris loadable modules 

 PROCESS MANAGEMENT 

A process can be thought of as a program in execution. A process will need certain 

resources—such as CPU time, memory, files, and I/O devices —to accomplish its task. These 

resources are allocated to the process either when it is created or while it is executing. A 

process is the unit of work in most systems. Systems consist of a collection of processes: 

operating-system processes execute system code, and user processes execute user code. All 

these processes may execute concurrently. Although traditionally a process contained only a 

single thread of control as it ran, most modern operating systems now support processes that 

have multiple threads. The operating system is responsible for several important aspects of 

process and thread management: the creation and deletion of both user and system processes; 

the scheduling of processes; and the provision of mechanisms for synchronization, 

communication, and deadlock handling for processes. 

 PROCESSES 

Firmer control and more compartmentalization of the various programs; and these 

needs resulted in the notion of a process, which is a program in execution. A process is the 

unit of work in a modern time-sharing system. 

A batch system executes jobs, whereas a time-shared system has user programs, or 

tasks. Even on a single-user system, a user may be able to run several programs at one time: 

a word processor, a Web browser, and an e-mail package. And even if a user can execute 

only one program at a time, such as on an embedded device that does not support 

multitasking, the operating system may need to support its own internal programmed 

activities, such as memory management. 

 



 

 
 

In many respects, all these activities are similar, so we call all of them processes. The 

terms job and process are used almost interchangeably in this text. Although we personally 

prefer the term process, much of operating-system theory and terminology was developed 

during a time when the major activity of operating systems was job processing. It would be 

misleading to avoid the use of commonly accepted terms that include the word job (such as 

job scheduling) simply because process has superseded job. 

A process is a program in execution. A process is more than the program code, which 

is sometimes known as the text section. It also includes the current activity, as represented by 

the value of the program counter and the contents of the processor’s registers. A process 

generally also includes the process stack, which contains temporary data (such as function 

parameters, return addresses, and local variables), and a data section, which contains global 

variables. A process may also include a heap, which is memory that is dynamically allocated 

during process run time. The structure of a process in memory is shown in Figure 2.14. 

 

Figure 2.14 Process in memory 

 PROCESS STATE 

• Processes may be in one of 5 states, as shown in Figure 2.15 below. 

o New - The process is in the stage of being created. 

o Ready - The process has all the resources available that it needs to run, but the 

CPU is not currently working on this process's instructions. 

o Running - The CPU is working on this process's instructions. 

o Waiting - The process cannot run at the moment, because it is waiting for 

some resource to become available or for some event to occur. For example 

the process may be waiting for keyboard input, disk access request, inter- 

process messages, a timer to go off, or a child process to finish. 

 



 

 
 

o Terminated - The process has completed. 

Figure 2.15 - Diagram of process state 

• The load average reported by the "w" command indicate the average number of 

processes in the "Ready" state over the last 1, 5, and 15 minutes, i.e. processes who 

have everything they need to run but cannot because the CPU is busy doing 

something else. 

• Some systems may have other states besides the ones listed here. 

 PROCESS CONTROL BLOCK 

Each process is represented in the operating system by a Process Control Block 

(PCB)—also called a task control block. A PCB is shown in Figure 2.16. It contains many 

pieces of information associated with a specific process, including these: 

• Process state. The state may be new, ready, running, and waiting, halted, and so on. 

• Process ID, and parent process ID. 

• Program counter. The counter indicates the address of the next instruction to be 

executed for this process. 

• CPU registers. The registers vary in number and type, depending on the computer 

architecture. They include accumulators, index registers, stack pointers, and general-purpose 

registers, plus any condition-code information. Along with the program counter, this state 

information must be saved when an interrupt occurs, to allow the process to be continued 

correctly afterward (Figure 2.17). 

• CPU-scheduling information. This information includes a process priority, 

pointers to scheduling queues, and any other scheduling parameters. 

 

 

 
 



 

 
 

• Memory-management information. This information may include such items as 

the value of the base and limit registers and the page tables, or the segment tables, depending 

on the memory system used by the operating system. 

 
 

Figure 2.16 - Process control block (PCB) 
 

 
 

Figure 2.17 Diagram showing CPU switch from process to process. 

 THREADS 

The process model discussed so far has implied that a process is a program that 

performs a single thread of execution. For example, when a process is running a word 

processor program, a single thread of instructions is being executed. This single thread of 

control allows the process to perform only one task at a time. The user cannot simultaneously 

 



 

 
 

type in characters and run the spell checker within the same process, for example. Most 

modern operating systems have extended the process concept to allow a process to have 

multiple threads of execution and thus to perform more than one task at a time. 

This feature is especially beneficial on multicore systems, where multiple threads can 

run in parallel. On a system that supports threads, the PCB is expanded to include 

information for each thread. Other changes throughout the system are also needed to support 

threads. 

 PROCESS SCHEDULING 

The objective of multiprogramming is to have some process running at all times, to 

maximize CPU utilization. The objective of time sharing is to switch the CPU among 

processes so frequently that users can interact with each program, while it is running. To  

meet these objectives, the process scheduler selects an available process (possibly from a set 

of several available processes) for program execution on the CPU. For a single-processor 

system, there will never be more than one running process. If there are more processes, the 

rest will have to wait until the CPU is free and can be rescheduled. 

 SCHEDULING QUEUES 

As processes enter the system, they are put into a job queue, which consists of all 

processes in the system. The processes that are residing in main memory and are ready and 

waiting to execute are kept on a list called the ready queue. This queue is generally stored as 

a linked list. A ready-queue header contains pointers to the first and final PCBs in the list. 

Each PCB includes a pointer field that points to the next PCB in the ready queue. The system 

also includes other queues. 

When a process is allocated the CPU, it executes for a while and eventually quits, is 

interrupted, or waits for the occurrence of a particular event, such as the completion of an I/O 

request. Suppose the process makes an I/O request to a shared device, such as a disk. Since 

there are many processes in the system, the disk may be busy with the I/O request of some 

other process. 

The process therefore may have to wait for the disk. The list of processes waiting for  

a particular I/O device is called a device queue. Each device has its own device queue 

(Figure 2.18). 

 

 

 



 

 
 

 

Figure 2.18 The ready queue and various I/O device queues. 

A common representation of process scheduling is a queueing diagram, such as that in 

Figure 2.19. Each rectangular box represents a queue. Two types of queues are present: the 

ready queue and a set of device queues. The circles represent the resources that serve the 

queues, and the arrows indicate the flow of processes in the system. A new process is initially 

put in the ready queue. It waits there until it is selected for execution, or dispatched. Once the 

process is allocated the CPU and is executing, one of several events could occur: 

• The process could issue an I/O request and then be placed in an I/O queue. 

• The process could create a new child process and wait for the child’s termination. 

• The process could be removed forcibly from the CPU, as a result of an interrupt, and be put 

    bac k in the read que ue. 

 

 

 

 

 

 

Figure 2.19 Queueing-diagram representation of process scheduling. 
 



 

Switching the CPU to another process requires performing a state save of the current 

process and a state restore of a different process. This task is known as a Context 

 
 

 SCHEDULERS 

A process migrates among the various scheduling queues throughout its lifetime. The 

operating system must select, for scheduling purposes, processes from these queues in some 

fashion. The selection process is carried out by the appropriate scheduler. Often, in a batch 

system, more processes are submitted than can be executed immediately. These processes are 

spooled to a mass-storage device (typically a disk), where they are kept for later execution. 

The long-term scheduler, or job scheduler, selects processes from this pool and loads them 

into memory for execution. The short-term scheduler, or CPU scheduler, selects from among 

the processes that are ready to execute and allocates the CPU to one of them. 

Degree of multiprogramming - The long-term scheduler controls the degree of 

multiprogramming (the number of processes in memory). If the degree of 

multiprogramming is stable, then the average rate of process creation must be equal to the 

average departure rate of processes leaving the system. 

CPU-bound process – generates I/O requests infrequently, using more of its time doing 

computations. 

I/O-bound process - is one that spends more of its time doing I/O than it spends doing 

computations. 

Medium-term scheduler is diagrammed in Figure 2.20. The key idea behind a medium-term 

scheduler is that sometimes it can be advantageous to remove a process from memory (and 

from active contention for the CPU) and thus reduce the degree of multiprogramming. 

 

Figure 2.20 Addition of medium-term scheduling to the queueing diagram. 

 CONTEXT SWITCH 

 
 



 

 
 

When an interrupt occurs, the system needs to save the current context of the process 

running on the CPU so that it can restore that context when its processing is done, essentially 

suspending the process and then resuming it. The context is represented in the PCB of the 

process. 

 OPERATIONS ON PROCESSES 

 PROCESS CREATION 

• Processes  may  create   other  processes  through  appropriate  system  calls,  such    

as fork or spawn. The process which does the creating is termed the parent of the 

other process, which is termed its child. 

• Each process is given an integer identifier, termed its process identifier, or PID. The 

parent PID ( PPID ) is also stored for each process. 

• On typical UNIX systems the process scheduler is termed sched, and is given PID 0. 

The first thing it does at system start up time is to launch init, which gives that 

process PID 1. Init then launches all system daemons and user logins, and becomes 

the ultimate parent of all other processes. Figure 2.21 shows a typical process tree for 

a Linux system, and other systems will have similar though not identical trees: 

 

Figure 2.21 - A tree of processes on a typical Linux system 

• Depending on system implementation, a child process may receive some amount of 

shared resources with its parent. Child processes may or may not be limited to a 

 



 

 
 

subset of the resources originally allocated to the parent, preventing runaway children 

from consuming all of a certain system resource. 

• There are two options for the parent process after creating the child: 

1. Wait for the child process to terminate before proceeding. The parent makes a 

wait( ) system call, for either a specific child or for any child, which causes the 

parent process to block until the wait( ) returns. UNIX shells normally wait for 

their children to complete before issuing a new prompt. 

2. Run concurrently with the child, continuing to process without waiting. This is 

the operation seen when a UNIX shell runs a process as a background task. It 

is also possible for the parent to run for a while, and then wait for the child 

later, which might occur in a sort of a parallel processing operation. 

• Two possibilities for the address space of the child relative to the parent: 

1. The child may be an exact duplicate of the parent, sharing the same program 

and data segments in memory. Each will have their own PCB, including 

program counter, registers, and PID. This is the behaviour of the fork system 

call in UNIX. 

2. The child process may have a new program loaded into its address space, with 

all new code and data segments. This is the behaviour of the spawn system 

calls in Windows.  UNIX systems  implement  this  as  a second step, using  

the exec system call. 

• Figures 2.22 and 2.23 below shows the fork and exec process on a UNIX system. 

Note that the fork system call returns the PID of the processes child to each process - 

It returns a zero to the child process and a non-zero child PID to the parent, so the 

return value indicates which process is which. Process IDs can be looked up any time 

for the current process or its direct parent using the getpid( ) and getppid( ) system 

calls respectively. 

 

 

 

 

 

 

 

 

 

 
 



 

 
 

 

 

Figure 2.22 Creating a separate process using the UNIX fork() system call. 

Figure 2.23 shows the more complicated process for Windows, which must provide all of 

the parameter information for the new process as part of the forking process. 

 PROCESS TERMINATION 

• Processes may request their own termination by making the exit( ) system call, 

typically returning an int. This int is passed along to the parent if it is doing a wait( ), 

and is typically zero on successful completion and some non-zero code in the event of 

problems. 

child code: 

int exitCode; 

exit( exitCode ); // return exitCode; has the same effect when executed from main( ) 

parent code: 

pid_t pid; 

int status 

pid = wait( &status ); 

// pid indicates which child exited. Exit Code in low-order bits of status 

// macros can test the high-order bits of status for why it stopped 

• Processes may also be terminated by the system for a variety of reasons, including: 

o The inability of the system to deliver necessary system resources. 

o In response to a KILL command, or other unhandled process interrupt. 

o A parent may kill its children if the task assigned to them is no longer needed. 
 

 



 

 
 

o If the parent exits, the system may or may not allow the child to continue 

without a parent. (On UNIX systems, orphaned processes are generally 

inherited   by    init,    which    then    proceeds    to    kill    them.    The   

UNIX nohup command allows a child to continue executing after its parent 

has exited. ) 

• When a process terminates, all of its system resources are freed up, open files flushed 

and closed, etc. The process termination status and execution times are returned to the 

parent if the parent is waiting for the child to terminate, or eventually returned to init 

if the process becomes an orphan. (Processes which are trying to terminate but which 

cannot because their parent is not waiting for them are termed zombies. These are 

eventually inherited by init as orphans and killed off. Note that modern UNIX shells 

do not produce as many orphans and zombies as older systems used to.) 

 INTERPROCESS COMMUNICATION 

• Independent Processes operating concurrently on a systems are those that can neither 

affect other processes or be affected by other processes. 

• Cooperating Processes are those that can affect or be affected by other processes. 

There are several reasons why cooperating processes are allowed: 

o Information Sharing - There may be several processes which need access to 

the same file for example. (e.g. pipelines.) 

o Computation speedup - Often a solution to a problem can be solved faster if 

the problem can be broken down into sub-tasks to be solved simultaneously 

(particularly when multiple processors are involved.) 

o Modularity - The most efficient architecture may be to break a system down 

into cooperating modules. (E.g. databases with a client-server architecture.) 

o Convenience - Even a single user may be multi-tasking, such as editing, 

compiling, printing, and running the same code in different windows. 

 

 

 

 

 

 
 



 

 
 

 

Figure 2.23 Creating a separate process using Win32 API 

• Cooperating processes require some type of inter-process communication, which is 

most commonly one of two types: Shared Memory systems or Message Passing 

systems. Figure 2.24 illustrates the difference between the two systems: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

Figure 2.24 - Communications models: (a) Message passing. (b) Shared memory. 

 
• Shared Memory is faster once it is set up, because no system calls are required and 

access occurs at normal memory speeds. However it is more complicated to set up, 

and doesn't work as well across multiple computers. Shared memory is generally 

preferable when large amounts of information must be shared quickly on the same 

computer. 

• Message Passing requires system calls for every message transfer, and is therefore 

slower, but it is simpler to set up and works well across multiple computers. Message 

passing is generally preferable when the amount and/or frequency of data transfers is 

small, or when multiple computers are involved. 

 Shared-Memory Systems 

 

• In general the memory to be shared in a shared-memory system is initially within the 

address space of a particular process, which needs to make system calls in order to 

make that memory publicly available to one or more other processes. 

• Other processes which wish to use the shared memory must then make their own 

system calls to attach the shared memory area onto their address space. 

• Generally a few messages must be passed back and forth between the cooperating 

processes first in order to set up and coordinate the shared memory access. 

 

 



 

 
 

Producer-Consumer Example Using Shared Memory 

 
This is a classic example, in which one process is producing data and another process 

is consuming the data. The data is passed via an intermediary buffer, which may be either 

unbounded or bounded. With a bounded buffer the producer may have to wait until there is 

space available in the buffer, but with an unbounded buffer the producer will never need to 

wait. The consumer may need to wait in either case until there is data available. 

This example uses shared memory and a circular queue. Note in the code below that 

only the producer changes "in", and only the consumer changes "out", and that they can never 

be accessing the same array location at the same time. 

First the following data is set up in the shared memory area: 

 
#define BUFFER_SIZE 10 

typedef struct { 

. . . 

} item; 

item buffer[ BUFFER_SIZE ]; 

int in = 0; 

int out = 0; 

• Then the producer process. Note that the buffer is full when "in" is one less than "out" in 

a circular sense: 

item nextProduced; 

while( true ) { 

/* Produce an item and store it in nextProduced */ 

nextProduced = makeNewItem( . . . ); 

/* Wait for space to become available */ 

while( ( ( in + 1 ) % BUFFER_SIZE ) == out ) 

; /* Do nothing */ 

/* And then store the item and repeat the loop. */ 

buffer[ in ] = nextProduced; 

in = ( in + 1 ) % BUFFER_SIZE; 

• Then the consumer process. Note that the buffer is empty when "in" is equal to "out": 

 



 

 
 

item nextConsumed; 

while( true ) { 

/* Wait for an item to become available */ 

while( in == out ) 

; /* Do nothing */ 

/* Get the next available item */ 

nextConsumed = buffer[ out ]; 

out = ( out + 1 ) % BUFFER_SIZE; 

/* Consume the item in nextConsumed 

( Do something with it ) */ 

} 

 MESSAGE-PASSING SYSTEMS 

 
• Message passing systems must support at a minimum system calls for "send message" 

and "receive message". 

• A communication link must be established between the cooperating processes before 

messages can be sent. 

• There are three key issues to be resolved in message passing systems as further 

explored in the next three subsections: 

o Direct or indirect communication ( naming ) 

o Synchronous or asynchronous communication 

o Automatic or explicit buffering. 

Naming 

• With direct communication the sender must know the name of the receiver to which 

it wishes to send a message. 

o There is a one-to-one link between every sender-receiver pair. 

o For symmetric communication, the receiver must also know the specific name 

of    the    sender    from    which    it     wishes     to     receive     messages. 

For asymmetric communications, this is not necessary. 

• Indirect communication uses shared mailboxes, or ports. 

o Multiple processes can share the same mailbox or boxes. 
 

 

 



 

 
 

o Only one process can read any given message in a mailbox. Initially the 

process that creates the mailbox is the owner, and is the only one allowed to 

read mail in the mailbox, although this privilege may be transferred. 

o The OS must provide system calls to create and delete mailboxes, and to send 

and receive messages to/from mailboxes. 

 SYNCHRONIZATION 

• Either  the  sending  or  receiving  of  messages  (or  neither  or   both)   may   be 

either blocking or non-blocking. Blocking is considered synchronous Non-blocking 

is considered asynchronous 

• Blocking send has the sender block until the message is received o Blocking receive 

has the receiver block until a message is available. 

• Non-blocking send has the sender send the message and continue o Non-blocking 

receive has the receiver receive a valid message or null 

 BUFFERING 

• Messages are passed via queues, which may have one of three capacity 

configurations: 

1. Zero capacity - Messages cannot be stored in the queue, so senders must 

block until receivers accept the messages. 

2. Bounded capacity- There is a certain pre-determined finite capacity in the 

queue. Senders must block if the queue is full, until space becomes available 

in the queue, but may be either blocking or non-blocking otherwise. 

3. Unbounded capacity - The queue has a theoretical infinite capacity, so 

senders are never forced to block. 

 
 

 
Figure 2.25 The Producer Process using message passing 

 

 

 

 



 

 
 

 
 

Figure 2.26 The Producer Process using message passing 

 COMMUNICATION IN CLIENT-SERVER SYSTEMS 

 SOCKETS 

• A socket is an endpoint for communication. 

• Two processes communicating over a network often use a pair of connected sockets 

as a communication channel. Software that is designed for client-server operation may 

also use sockets for communication between two processes running on the same 

computer - For example the UI for a database program may communicate with the 

back-end database manager using sockets. (If the program were developed this way 

from the beginning, it makes it very easy to port it from a single-computer system to a 

networked application.) 

• A socket is identified by an IP address concatenated with a port number, e.g. 

200.100.50.5:80. 

 

Figure 2.27 communications using sockets 
 

 



 

 
 

• Port numbers below 1024 are considered to be well-known, and are generally reserved 

for common Internet services. For example, telnet servers listen to port 23, ftp servers 

to port 21, and web servers to port 80. 

• General purpose user sockets are assigned unused ports over 1024 by the operating 

system in response to system calls such as socket( ) or soctkepair( ). 

• Communication channels via sockets may be of one of two major forms: 

o Connection-oriented (TCP, Transmission Control Protocol) connections 

emulate a telephone connection. All packets sent down the connection are 

guaranteed to arrive in good condition at the other end, and to be delivered to 

the receiving process in the order in which they were sent. The TCP layer of 

the network protocol takes steps to verify all packets sent, re-send packets if 

necessary, and arrange the received packets in the proper order before 

delivering them to the receiving process. There is a certain amount of 

overhead involved in this procedure, and if one packet is missing or delayed, 

then any packets which follow will have to wait until the errant packet is 

delivered before they can continue their journey. 

o Connectionless (UDP, User Datagram Protocol) emulate individual telegrams. 

There is no guarantee that any particular packet will get through undamaged 

(or at all), and no guarantee that the packets will get delivered in any particular 

order. There may even be duplicate packets delivered, depending on how the 

intermediary connections are configured. UDP transmissions are much faster 

than TCP, but applications must implement their own error checking and 

recovery procedures. 

• Sockets are considered a low-level communications channel, and processes may often 

choose to use something at a higher level, such as those covered in the next two 

sections. 

 THREAD 

• A thread is a flow of execution through the process code, with its own program 

counter, system registers and stack. 

• A thread is also called a light weight process. Threads provide a way to improve 

application performance through parallelism. 

 



 

 
 

• Threads represent a software approach to improving performance of operating 

system by reducing the overhead thread is equivalent to a classical process. 

 
 

2.28 Single threaded vs multithreaded process 

User Threads 

• Thread management done by user-level threads library 

• Three primary thread libraries: 

o POSIX Pthreads 

o Win32 threads 

o Java threads 

Kernel Thread 

• Supported by the Kernel Examples 

o Windows XP/2000 

o Solaris 

o Linux 

o Tru64 UNIX 

o Mac OS X 
 

 

 

 

 

 

 

 
 



 

 
 

 

 

Figure 2.29 Difference between Process and thread 

THREAD SCHEDULING 

• Distinction between user-level and kernel-level threads 

• Many-to-one and many-to-many models, thread library schedules user-level threads to run 

on LWP Known as process-contention scope (PCS) since scheduling competition is within 

the process 

• Kernel thread scheduled onto available CPU is system-contention scope (SCS) – 

competition among all threads in system. 

THREAD POOLS 

• Create a number of threads in a pool where they await work 

• Advantages: 

o Usually slightly faster to service a request with an existing thread than create a new 

thread 

o Allows the number of threads in the application(s) to be bound to the size of the pool 
 

 
 



 

 
 

 

 TWO MARKS QUESTIONS WITH ANSWERS 

1. What is an Operating system? 

Ans: An operating system is a program that manages the computer hardware. It also 

provides a basis for application programs and act as an intermediary between a user of 

a computer and the computer hardware. It controls and coordinates the use of the 

hardware among the various application programs for the various users. 

2. What are the objectives of operating system? 

Ans: An operating system is a program that manages the computer hardware, it act as 

an intermediate between a user of a computer and the computer hardware. It controls 

and coordinates the use of the hardware among the various application programs for 

the various users. 

3. What is the purpose of system programs/system calls? 

Ans: System programs can be thought of as bundles of useful system calls. They 

provide basic functionality to users so that users do not need to write their own 

programs to solve common problems. 

4. Defend timesharing differ from multiprogramming? If so, how? 

Ans: Main difference between multiprogramming and time sharing is that 

multiprogramming is the effective utilization of CPU time, by allowing several 

programs to use the CPU at the same time but time sharing is the sharing of a 

computing facility by several users that want to use the same facility at the same time. 

5. Compare and contrast DMA and cache memory. 

Ans: DMA(Direct Memory Access): Direct memory access (DMA) is a feature of 

computer systems that allows certain hardware subsystems to access main memory 

(Random-access memory), independent of the central processing unit (CPU). Cache 

Memory: A cache is a smaller, faster memory, closer to a processor core, which stores 

copies of the data from frequently used main memory locations. So, both DMA and 

cache are used for increasing the speed of memory access. 

6. What do you mean by system calls? 

Ans: System calls provide the interface between a process and the operating system. 

When a system call is executed, it is treated as by the hardware as software interrupt. 

7. Define process. 
 
 



 

 
 

Ans: A process is a program in execution. It is an active entity and it includes the 

process stack, containing temporary data and the data section contains global 

variables. 

8. What is process control block? 

Ans: Each process is represented in the OS by a process control block. It contain 

many pieces of information associated with a specific process. 

9. What is meant by context switch? 

Ans: Switching the CPU to another process requires saving the state of the old 

process and loading the saved state for the new process. This task is known as context 

switch. 

10. Discuss the difference between symmetric and asymmetric multiprocessing 

Ans: Symmetric multiprocessing (SMP), in which each processor runs an identical 

copy of the operating system and these copies, communicate with one another as 

needed. Asymmetric multiprocessing, in which each processor is assigned a specific 

task. The master processor controls the system; the other processor looks the master. 

11. What is the main advantage of multiprogramming? 

Ans: Multiprogramming makes efficient use of the CPU by overlapping the demands 

for the CPU and its I/O devices from various users. It attempts to increase CPU 

utilization by always having something for the CPU to execute. 

12. Discuss the main advantages of layered approach to system design? 

Ans: As in all cases of modular design, designing an operating system in a modular 

way has several advantages. The system is easier to debug and modify because 

changes affect only limited sections of the system rather than touching all sections of 

the operating system. Information is kept only where it is needed and is accessible 

only within a defined and restricted area, so any bugs affecting that data must be 

limited to a specific module or layer. 

13. Define inter process communication. 

Ans: Inter process communication provides a mechanism to allow the co-operating 

process to communicate with each other and synchronies their actions without sharing 

the same address space. It is provided a message passing system. 

14. What is bootstrap program? 
 

 



 

 
 

Ans: A bootstrap is the program that initializes the operating system (OS) during 

startup. 

15. Summarize the functions of DMA. 

Ans: Direct memory access (DMA) is a method that allows an input/output (I/O) 

device to send or receive data directly to or from the main memory, bypassing the 

CPU to speed up memory operations. The process is managed by a chip known as a 

DMA controller (DMAC). 

16. Define: Clustered systems. 

Ans: A computer cluster is a set of loosely or tightly connected computers that work 

together so that, in many respects, they can be viewed as a single system. 

17. What is the Kernel? 

Ans: A more common definition is that the OS is the one program running at all times 

on the computer, usually called the kernel, with all else being application programs. 

18. List the services provided by an Operating System? 

Ans: * Program execution 

* I/O Operation 

* File-System manipulation 

* Communications 

* Error detection 

19. What is meant by Batch Systems? 

Ans: Operators batched together jobs with similar needs and ran through the 

computer as a group .The operators would sort programs into batches with similar 

requirements and as system become available, it would run each batch. 

20. What is meant by Time-sharing Systems? 

Ans: Time Sharing is a logical extension of multiprogramming .Here, CPU executes 

multiple jobs by switching among them, but the switches occur so frequently that the 

users can interact with each program while it is running. 

5 MARK QUESTIONS 

1. What are the various objectives and functions of Operating systems? 

2. What are the major activities of an operating systems with regard to process 

management? 

3. Differentiate distributed systems from multiprocessor system? 



 

 
 

4. Explain the basic instruction cycle with appropriate diagram? 

5. Explain OS structure? 

6. Briefly explain virtual machines? 

7. Explain about multiprogramming and time sharing operating system? 

8. Explain computer system architecture? 

9. Explain about system calls? 

10. What is OS user interface? 

10 MARK QUESTIONS 

1. What is system calls in OS? Explain in detail with its types. 

2. Discuss the Simple Operating System Structure. Describe the layered approach 

3. What are different types of operating system? Explain them in detail 

4. Explain User Operating-System Interface in detail 

5. Explain operating system functions and services in detail 

 

 

KEY TERMS 

▪ Application Programming Interface (API)—Specification that allows applications 

to request services from the kernel by making system calls. 

▪ Client—Process that requests a service from another process (a server). The machine 

on which the client process runs is also called a client. 

▪ Degree of Multiprogramming—Number of programs a system can manage at a 

time. 

▪ Efficient Operating System—operating system that exhibits high throughput and 

small turnaround time. 

▪ Disk Scheduler—operating system component that determines the order in which 

disk I/O requests are serviced to improve performance. 

▪ Distributed Computing—using multiple independent computers to perform a 

common task. 

▪ Distributed Operating System—Single operating system that provides transparent 

access to resources spread over multiple computers. 

 

 

 

 
 



 

 
 

▪ Graphical User Interface (GUI)—User-friendly point of access to an operating 

system that uses graphical symbols such as windows, icons and menus to facilitate 

program and file manipulation. 

▪ Interprocess Communication (IPC) manager—Operating system component that 

governs communication between processes. 

▪ Kernel—Software that contains the core components of an operating system. 

▪ Layered Operating System—Modular operating system that places similar 

components in isolated layers. Each layer accesses the services of the layer below and 

returns results to the layer above. 

▪ Microkernel Operating System—Scalable operating system that puts a minimal 

number of services in the kernel and requires user-level programs to implement 

services generally delegated to the kernel in other types of operating systems. 

▪ Multiprogramming—Ability to store multiple programs in memory at once so that 

they can be executed concurrently. 

▪ Process Scheduler—Operating system component that determines which process can 

gain access to a processor and for how long. 

▪ Process—an executing program. 

▪ Processor-Bound—Process (or job) that consumes its quantum when executing. 

These processes (or jobs) tend to be calculation intensive and issue few, if any, I/O 

requests. 

▪ System Call— Call from a user process that invokes a service of the kernel. 

▪ Thread—Entity that describes an independently executable stream of program 

instructions (also called a thread of execution or thread of control). Threads facilitate 

parallel execution of concurrent activities within a process. 

▪ Throughput—Amount of work performed per unit time. 

▪ Turnaround Time—Time it takes from the submission of a request until the system 

returns the result. 

 

 

 

 

 

 

 

 
 



 

 
 

 

UNIT 2. CPU SCHEDULING 

 INTRODUCTION 

CPU scheduling is executed y operating system. Only one process can be acuire CPU 

at a time of execution, another process will be on hold due to unavailability of resource. It is 

the duty of operating system to make use of CPU utilization at the most in a multi 

programmed environment. CPU scheduling is to make the system efficient, fast and fair. 

Scheduling of this kind is a fundamental operating-system function. Almost all 

computer resources are scheduled before use. The CPU is, of course, one of the primary 

computer resources. Thus, its scheduling is central to operating-system design. 
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Figure: 2.1 Alternating sequence of CPU 
 

In multiprogramming system, several processes are kept in memory at one time. 

When one process has to wait, the operating system takes the CPU away from that process 

and gives the CPU to another process. This sequence continues, every time one process has to 

wait, another process can take over use of the CPU. 

 CPU SCHEDULER 

 
Whenever the CPU becomes idle, the operating system must select one of the 

processes in the ready queue to be executed. The selection process is carried out by the short- 

Load store 
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Read from file 
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Preemptive 

When a process switches from running to a waiting state (due to unavailability of I/O) or 

terminates 

Non preemptive 

Once the resource allocated to a process, the process holds the CPU till it gets terminated or it 

reaches a waiting state 

 
 

term scheduler (or CPU scheduler). The scheduler selects from among the processes in 

memory that are ready to execute, and allocates the CPU to one of them. Selection of process 

by CPU follows the scheduling algorithm. 

CPU scheduling decisions may take place when a process: 

 
1. Switches from running to waiting state 

2. Switches from running to ready state 

3. Switches from waiting to ready 

4. Terminates 

Scheduling under 1 and 4 is non preemptive, All other scheduling is preemptive 

 

 
 

 SCHEDULING CRITERIA 

There are many different criteria’s to check when considering the "best" scheduling 

algorithm, they are: 

CPU Utilization 
 

To make out the best use of CPU and not to waste any CPU cycle, CPU would be 

working most of the time(Ideally 100% of the time). Considering a real system, CPU usage 

should range from 40% (lightly loaded) to 90% (heavily loaded.) 

Throughput 
 

It is the total number of processes completed per unit time or rather say total amount 

of work done in a unit of time. This may range from 10/second to 1/hour depending on the 

specific processes. 

 

 

 

 

 



 

 

urnaround Time 
 

It is the amount of time taken to execute a particular process, i.e. The interval from 

time of submission of the process to the time of completion of the process(Wall clock time). 

Waiting Time 
 

The sum of the periods spent waiting in the ready queue amount of time a process has 

been waiting in the ready queue to acquire get control on the CPU. 

Load Average 
 

It is the average number of processes residing in the ready queue waiting for their turn 

to get into the CPU. 

Response Time 
 

Amount of time it takes from when a request was submitted until the first response is 

produced. Remember, it is the time till the first response and not the completion of process 

execution (final response). 

In general CPU utilization and Throughput are maximized and other factors are 

reduced for proper optimization. 

 DISPATCHER 

Another component involved in the CPU scheduling function is the Dispatcher. The 

dispatcher is the module that gives control of the CPU to the process selected by the short- 

term scheduler. This function involves: 

• Switching context 

• Switching to user mode 

• Jumping to the proper location in the user program to restart that program from where 

it left last time. 

The dispatcher should be as fast as possible, given that it is invoked during every process 

switch. The time taken by the dispatcher to stop one process and start another process is 

known as the Dispatch Latency. Dispatch Latency can be explained using the below 

 

 

 

 

 

 



 

 
 

 

 

 

 CPU SCHEDULING 

Figure: 2.2 Dispatch Latency 

 

 FIRST COME FIRST SERVE 

First Come First Serve (FCFS) scheduling algorithm simply schedules the jobs 

according to their arrival time. The job which comes first in the ready queue will get the CPU 

first. The lesser the arrival time of the job, the sooner will the job get the CPU. FCFS 

scheduling may cause the problem of starvation if the burst time of the first process is the 

longest among all the jobs. 

• First Come First Serve is just like FIFO (First in First out) Queue data structure, 

where the data element which is added to the queue first, is the one who leaves the 

queue first. 

• This is used in Batch Systems. 

• It's easy to understand and implement programmatically, using a Queue data structure, 

where a new process enters through the tail of the queue, and the scheduler selects 

process from the head of the queue. 

• A perfect real life example of FCFS scheduling is buying tickets at ticket counter. 

 

Consider the processes P1, P2, P3, P4 given in the below table, arrives for execution in 

the same order, with Arrival Time 0, and given Burst Time, let's find the average waiting 

time using the FCFS scheduling algorithm. 

 



 

 
 

 

PROCESS BURST TIME 

P1 21 

P2 3 

P3 6 

P4 2 

 
 

P1 P2 P3 P4 

 

0 21 24 30 32 

 
For the above given processes, first P1 will be provided with the CPU resources 

• Hence, waiting time for P1 will be 0 

• P1 requires 21 ms for completion, hence waiting time for P2 will be 21 ms 

• Similarly, waiting time for process P3 will be execution time of P1 + execution time 

for P2, which will be (21 + 3) ms = 24 ms. 

• For process P4 it will be the sum of execution times of P1, P2 and P3. 
 
 

PROCESS BURST TIME WAITING TIIME 

P1 21 0 

P2 3 21 

P3 6 24 

P4 2 30 

 

AVERAGE WAITING TIME = (0+21+24+30)/4 =18.75 

ADVANTAGES 

1. Suitable for batch system 

2. FCFS is pretty simple and easy to implement. 

3. Eventually, every process will get a chance to run, so starvation doesn't occur. 

 

DISADVANTAGES 

1. The scheduling method is non preemptive, the process will run to the completion. 
 



 

 
 

2. Due to the non-preemptive nature of the algorithm, the problem of starvation may 

occur. 

3. Although it is easy to implement, but it is poor in performance since the average 

waiting time is higher as compare to other scheduling algorithms. 

IMLPEMENTATION IN C PROGRAM 

#include<stdio.h> 

int main() 

{ 

int n,bt[20],wt[20],tat[20],avwt=0,avtat=0,i,j; 

printf("Enter total number of processes(maximum 20):"); 

scanf("%d",&n); 

printf("\nEnter Process Burst Time\n"); 

for(i=0;i<n;i++) 

{ 

printf("P[%d]:",i+1); 

scanf("%d",&bt[i]); 

} 

wt[0]=0; //waiting time for first process is 0 

 
//calculating waiting time 

for(i=1;i<n;i++) 

{ 

wt[i]=0; 

for(j=0;j<i;j++) 

wt[i]+=bt[j]; 

} 

printf("\nProcess\t\tBurst Time\tWaiting Time\tTurnaround 

Time"); 

//calculating turnaround time 

for(i=0;i<n;i++) 

{ 

tat[i]=bt[i]+wt[i]; 

avwt+=wt[i]; 

avtat+=tat[i]; 

printf("\nP[%d]\t\t%d\t\t%d\t\t%d",i+1,bt[i],wt[i],tat[i]); 

} 

avwt/=i; 

avtat/=i; 

printf("\n\nAverage Waiting Time:%d",avwt); 

printf("\nAverage Turnaround Time:%d",avtat); 

return 0;} 



 

 
 

 

OUTPUT 

Enter total number of processes(maximum 20):4 

Enter Process Burst Time 

P[1]:21 

P[2]:3 

P[3]:6 

P[4]:2 
 

Process Burst Time Waiting Time Turnaround Time 

P[1] 21 0 21 

P[2] 3 21 24 

P[3] 6 24 30 

P[4] 2 30 32 

Average Waiting Time:18.750000 

 
 CONVOY EFFECT 

➢ Convoy Effect is a situation where many processes, who need to use a resource for short 

time are blocked by one process holding that resource for a long time. 

➢ This essentially leads to poor utilization of resources and hence poor performance. 

 
 SHORTEST JOB FIRST 

 

A diverse approach to CPU scheduling is the technique of shortest-job-first (SJF) 

scheduling algorithm which links with each process the length of the process's next CPU 

burst. If the CPU is available, it is assigned to the process that has the minimum next CPU 

burst. If the subsequent CPU bursts of two processes become the same, then FCFS scheduling 

is used to break the tie. 

 

➢ SJF scheduling algorithm, schedules the processes according to their burst time. 

➢ In SJF scheduling, the process with the lowest burst time, among the list of 

available processes in the ready queue, is going to be scheduled next. 

➢ However, it is very difficult to predict the burst time needed for a process hence 

this algorithm is very difficult to implement in the system. 

 

In the following example, there are five jobs named as P1, P2, P3, P4 and P5. Their 

arrival time and burst time are given in the table below. 

 

 

 
 



 

 
 

 

PID Arrival Time Burst Time 

1 0 7 

2 3 3 

3 4 2 

4 7 10 

5 9 8 

 

 

P1 P3 P2 P5 P4 

 

0 7 9 12 20 30 

For the above given processes, first P1 will be provided with the CPU resources based on 

Non preemptive scheduling 

• Hence, waiting time for P1 will be 0 

• P1 requires 7 ms for completion, CPU looks for the net process based on the lowest 

burst time. Compare with P2, P3 and P4, P3 has the smallest burst time, so P3 will be 

executed next. 

• Similarly, Next will be P2, since it has the smallest burst time. 

• Next will be P5 and at last P4. 

 
Average Waiting Time=7.8 

 

 
 

P1 P3 P1 P2 P5 P4 

     

0 4      6       9       12 20 30 

 

For the above given processes, first P1 will be provided with the CPU resources based on 

preemptive scheduling 

• Hence, waiting time for P1 will be 0 

• P1 requires 7 ms for completion, but P3 arrives CPU looks for the net process based 

on the lowest burst time. Compare with P2, P3 and P4, P3 has the smallest burst time, 

so P3 will be executed next. 

• Similarly, Next will be P2, since it has the smallest burst time. 



 

 
 

• Next will be P5 and at last P4. 

 
Advantages 

➢ short processes are executed first and then followed by longer processes. 

➢ The throughput is increased because more processes can be executed in less amount 

of time. 

Disadvantages: 

• The time taken by a process must be known by the CPU beforehand, which is not 

possible. 

• Longer processes will have more waiting time, eventually they'll suffer starvation. 

Sample program 

#include<stdio.h> 

void main() 

{ 

int bt[20],p[20],wt[20],tat[20],i,j,n,total=0,pos,temp; 

float avg_wt,avg_tat; 

printf("Enter number of process:"); 

scanf("%d",&n); 

 

printf("\nEnter Burst Time:\n"); 

for(i=0;i<n;i++) 

{ 

printf("p%d:",i+1); 

scanf("%d",&bt[i]); 

p[i]=i+1; //contains process number 

} 

//sorting burst time in ascending order using selection 

sort 

for(i=0;i<n;i++) 

{ 

pos=i; 

for(j=i+1;j<n;j++) 

{ 

if(bt[j]<bt[pos]) 

pos=j; 

} 
 

temp=bt[i]; 

bt[i]=bt[pos]; 

bt[pos]=temp; 

 

temp=p[i]; 

p[i]=p[pos]; 
 



 

 
 

p[pos]=temp; 

} 

wt[0]=0; //waiting time for first process will be zero 

//calculate waiting time 

for(i=1;i<n;i++) 

{ 

wt[i]=0; 

for(j=0;j<i;j++) 

wt[i]+=bt[j]; 
 

total+=wt[i]; 

} 

avg_wt=(float)total/n; //average waiting time 

total=0; 

printf("\nProcess\t Burst Time \tWaiting 

Time\tTurnaround Time"); 

for(i=0;i<n;i++) 

{ 

tat[i]=bt[i]+wt[i]; //calculate turnaround time 

total+=tat[i]; 

printf("\np%d\t\t %d\t\t %d\t\t\t%d",p[i],bt[i],wt 

[i],tat[i]); 

} 

avg_tat=(float)total/n; //average turnaround time 

printf("\n\nAverage Waiting Time=%f",avg_wt); 

printf("\nAverage Turnaround Time=%f\n",avg_tat); 

} 

Output 

Enter number of process:5 

 

Enter Burst Time: 

p1:7 

p2:3 

p3:2 

p4:10 

p5:8 

 
Process Burst Time Waiting Time Turnaround Time 

p3 2 0 2 

p2 3 2 5 
p1 7 5 12 

p5 8 12 20 
p4 10 20 30 

 

Average Waiting Time=7.800000 

Average Turnaround Time=13.800000 
 

 

 



 

 
 

 

 ROUND-ROBIN 

 
The round-robin (RR) scheduling technique is intended mainly for time-sharing 

systems. This algorithm is related to FCFS scheduling, but pre-emption is included to toggle 

among processes. A small unit of time which is termed as a time quantum or time slice has to 

be defined. A 'time quantum' is usually from 10 to 100 milliseconds. The ready queue gets 

treated with a circular queue. The CPU scheduler goes about the ready queue, allocating the 

CPU with each process for the time interval which is at least 1-time quantum. 

• A fixed time is allotted to each process, called quantum, for execution. 

• Once a process is executed for given time period that process is preempted and other 

process executes for given time period. 

• Context switching is used to save states of preempted processes. 

• If time quantum is very large than RR scheduling algorithm treat as FCFS and if time 

quantum is small than RR called processor sharing. Processor sharing show to each 

process that they have their own processor. 

• The central concept is time switching in RR scheduling. If the context switch time is 

10 percent of the time quantum then about 10 percent time will be spent in context 

switching. 

• The ready queue is maintained as a circular queue, so when all processes have had a 

turn, then the scheduler gives the first process another turn, and so on. 

Advantages 

1. It can be actually implementable in the system because it is not depending on the 

burst time. 

2. It doesn't suffer from the problem of starvation or convoy effect. 

3. All the jobs get a fare allocation of CPU. 

Disadvantages 

1. The higher the time quantum, the higher the response time in the system. 

2. The lower the time quantum, the higher the context switching overhead in the system. 

3. Deciding a perfect time quantum is really a very difficult task in the system. 
 

 

 

 

 

 
 



 

 
 

 

PROCESS ARRIVAL TIME BURST TIME 

P1 0 24 

P2 1 3 

P3 2 3 

 

• The performance of RR is sensitive to the time quantum selected. If the quantum is 

large enough, then RR reduces to the FCFS algorithm; If it is very small, then each 

process gets 1/nth of the processor time and share the CPU equally. 

• But, a real system invokes overhead for every context switch, and the smaller the time 

quantum the more context switches. Most modern systems use time quantum between 

10 and 100 milliseconds, and context switch times on the order of 10 microseconds, 

so the overhead is small relative to the time quantum. 

• Here we taken Time Quantum =4 

 

 

P1 P2 P3 P1 P1 P1 P1 P1 

0 4 7 10 14 18 22 26 30 

 
#include<stdio.h> 

int main() 

{ 

int count,j,n,time,remain,flag=0,time_quantum; 

int wait_time=0,turnaround_time=0,at[10],bt[10],rt[10]; 

printf("Enter Total Process:\t "); 

scanf("%d",&n); 

remain=n; 

for(count=0;count<n;count++) 

{ 

printf("Enter Arrival Time and Burst Time for Process 

Process Number %d :",count+1); 

scanf("%d",&at[count]); 

scanf("%d",&bt[count]); 
 

 



 

 
 

rt[count]=bt[count]; 

} 

printf("Enter Time Quantum:\t"); 

scanf("%d",&time_quantum); 

printf("\n\nProcess\t|Turnaround Time|Waiting Time\n\n"); 

for(time=0,count=0;remain!=0;) 

{ 

if(rt[count]<=time_quantum && rt[count]>0) 

{ 

time+=rt[count]; 

rt[count]=0; 

flag=1; 

} 

else if(rt[count]>0) 

{ 

rt[count]-=time_quantum; 

time+=time_quantum; 

} 

if(rt[count]==0 && flag==1) 

{ 

remain--; 

printf("P[%d]\t|\t%d\t|\t%d\n",count+1,time- 

at[count],time-at[count]-bt[count]); 

wait_time+=time-at[count]-bt[count]; 

turnaround_time+=time-at[count]; 

flag=0; 

} 

if(count==n-1) 

count=0; 

else if(at[count+1]<=time) 

count++; 



 

 
 

else 

count=0; 

} 

printf("\nAverage Waiting Time= %f\n",wait_time*1.0/n); 

printf("Avg Turnaround Time = %f",turnaround_time*1.0/n); 

return 0; 

} 

OUTPUT 

 
Enter Total Process: 3 

Enter Arrival Time and Burst Time for Process Process Number 1 :1 

24 

Enter Arrival Time and Burst Time for Process Process Number 2 :2 

3 

Enter Arrival Time and Burst Time for Process Process Number 3 :3 

3 

Enter Time Quantum: 4 
 

Process Turnaround Time Waiting Time 

P[2] 5 2 

P[3] 7 4 

P[1] 29 5 

 
Average Waiting Time= 3.666667 

 
 PRIORITY SCHEDULING 

 

Scheduler consider the priority of processes. The priority assigned to each process and 

CPU allocated to highest priority process. Equal priority processes scheduled in FCFS order. 

Priority can be discussed regarding Lower and higher priority. Numbers denote it. We 

can use 0 for lower priority as well as more top priority. There is not a hard and fast rule to 

assign numbers to preferences. 

 

 
 



 

 
 

Priority Scheduling suffers from a starvation problem. The starvation problem leads to 

indefinite blocking of a process due to low priority. Every time higher priority process 

acquires CPU, and Low priority process is still waiting in the waiting queue. The aging 

technique gives us a solution to overcome this starvation problem in this technique; we 

increased the priority of process that was waiting in the system for a long time. 

Advantages 

• The priority of a process can be selected based on memory requirement, time 

requirement or user preference. For example, a high end game will have better 

graphics, that means the process which updates the screen in a game will have higher 

priority so as to achieve better graphics performance. 

Disadvantages: 

• A second scheduling algorithm is required to schedule the processes which have same 

priority. 

• In preemptive priority scheduling, a higher priority process can execute ahead of an 

already executing lower priority process. If lower priority process keeps waiting for 

higher priority processes, starvation occurs. 

 

Now in this example, we are using low numbers to represent higher priority. 
 
 

PROCESS BURST TIME PRIORITY 

P1 10 4 

P2 4 1 

P3 6 3 

P4 5 2 

Average waiting time= (0+4+9+15) /4=28/4=7 

Average time is 7 milliseconds. 

#include<stdio.h> 

 

int main() 

{ 
 

 



 

 
 

int 

bt[20],p[20],wt[20],tat[20],pr[20],i,j,n,total=0,pos,temp,avg_ 

wt,avg_tat; 

printf("Enter Total Number of Process:"); 

scanf("%d",&n); 

 

printf("\nEnter Burst Time and Priority\n"); 

for(i=0;i<n;i++) 

{ 

printf("\nP[%d]\n",i+1); 

printf("Burst Time:"); 

scanf("%d",&bt[i]); 

printf("Priority:"); 

scanf("%d",&pr[i]); 

p[i]=i+1; //contains process number 

} 

//sorting burst time, priority and process number in 

ascending order using selection sort 

for(i=0;i<n;i++) 

{ 

pos=i; 

for(j=i+1;j<n;j++) 

{ 

if(pr[j]<pr[pos]) 

pos=j; 

} 

temp=pr[i]; 

pr[i]=pr[pos]; 

pr[pos]=temp; 

 

temp=bt[i]; 

bt[i]=bt[pos]; 

bt[pos]=temp; 
 

temp=p[i]; 

p[i]=p[pos]; 

p[pos]=temp; 

} 
 

wt[0]=0; //waiting time for first process is zero 

 

//calculate waiting time 

for(i=1;i<n;i++) 

{ 

wt[i]=0; 

for(j=0;j<i;j++) 

wt[i]+=bt[j]; 
 

 



 

 
 

total+=wt[i]; 

} 
 

avg_wt=total/n; //average waiting time 

total=0; 

 

printf("\nProcess\t Burst Time \tWaiting 

Time\tTurnaround Time"); 

for(i=0;i<n;i++) 

{ 

tat[i]=bt[i]+wt[i]; //calculate turnaround time 

total+=tat[i]; 

printf("\nP[%d]\t\t %d\t\t 

%d\t\t\t%d",p[i],bt[i],wt[i],tat[i]); 

} 

 

avg_tat=total/n; //average turnaround time 

printf("\n\nAverage Waiting Time=%d",avg_wt); 

printf("\nAverage Turnaround Time=%d\n",avg_tat); 
 

return 0; 

} 

OUTPUT 

Enter Total Number of Process:4 

Enter Burst Time and Priority 

P[1] 
Burst Time:10 

Priority:4 

 

P[2] 

Burst Time:4 

Priority:1 

P[3] 

Burst Time:6 

Priority:3 

P[4] 

Burst Time:5 

Priority:2 

Process Burst Time Waiting Time Turnaround Time 

P[2] 4 0 4 

P[4] 5 4 9 

P[3] 6 9 15 
P[1] 10 15 25 

 



 

 
 

Average Waiting Time=7 

Average Turnaround Time=13 

 MULTILEVEL QUEUE SCHEDULING 

 

This Scheduling algorithm has been created for situations in which processes are 

easily classified into different groups. 

1. System Processes 

2. Interactive Processes 

3. Interactive Editing Processes 

4. Batch Processes 

5. Student Processes 

For example: A common division is made between foreground(or interactive) processes 

and background (or batch) processes. These two types of processes have different response- 

time requirements, and so might have different scheduling needs. In addition, foreground 

processes may have priority over background processes. 

A multi-level queue scheduling algorithm partitions the ready queue into several separate 

queues. The processes are permanently assigned to one queue, generally based on some 

property of the process, such as memory size, process priority, or process type. Each queue 

has its own scheduling algorithm. 

For example: separate queues might be used for foreground and background processes. 

The foreground queue might be scheduled by Round Robin algorithm, while the background 

queue is scheduled by an FCFS algorithm. 

In addition, there must be scheduling among the queues, which is commonly 

implemented as fixed-priority preemptive scheduling. For example: The foreground queue 

may have absolute priority over the background queue. 

Each queue has absolute priority over lower-priority queues. No process in the batch 

queue, for example, could run unless the queues for system processes, interactive processes, 

and interactive editing processes were all empty. If an interactive editing process entered the 

ready queue while a batch process was running, the batch process will be preempted. 

 

 

 

 

 
 



 

 
 

 

 

Figure: 2.3 Multi level scheduling 

 MULTILEVEL FEEDBACK QUEUE SCHEDULING 

In a multilevel queue-scheduling algorithm, processes are permanently assigned to a 

queue on entry to the system. Processes do not move between queues. This setup has the 

advantage of low scheduling overhead, but the disadvantage of being inflexible. 

Multilevel feedback queue scheduling, however, allows a process to move between 

queues. The idea is to separate processes with different CPU-burst characteristics. If  a 

process uses too much CPU time, it will be moved to a lower-priority queue. Similarly, a 

process that waits too long in a lower-priority queue may be moved to a higher-priority 

queue. This form of aging prevents starvation. 

 

 

Figure: 2.4 Multi level queue scheduling 

An example of a multilevel feedback queue can be seen in the below figure. 

 
In general, a multilevel feedback queue scheduler is defined by the following parameters: 

 



 

 
 

• The number of queues. 

• The scheduling algorithm for each queue. 

• The method used to determine when to upgrade a process to a higher-priority queue. 

• The method used to determine when to demote a process to a lower-priority queue. 

• The method used to determine which queue a process will enter when that process 

needs service. 

 

The definition of a multilevel feedback queue scheduler makes it the most general CPU- 

scheduling algorithm. It can be configured to match a specific system under design. 

Unfortunately, it also requires some means of selecting values for all the parameters to define 

the best scheduler. Although a multilevel feedback queue is the most general scheme, it is 

also the most complex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 

Definition: A deadlock happens in operating system when two or more processes 

need some resource to complete their execution that is held by the other process. 

 
 

 

 
 

 INTRODUCTION 

DEADLOCK 

 

In a multiprogramming system, numerous processes get competed for a finite number of 

resources. Any process requests resources, and as the resources aren't available at that time, 

the process goes into a waiting state. At times, a waiting process is not at all able again to 

change its state as other waiting processes detain the resources it has requested. That 

condition is termed as deadlock. Every process needs some resources to complete its 

execution. However, the resource is granted in a sequential order. 

1. The process requests for some resource. 

2. OS grant the resource if it is available otherwise let the process waits. 

3. The process uses it and release on the completion. 

A Deadlock is a situation where each of the computer process waits for a resource which is 

being assigned to some another process. In this situation, none of the process gets executed 

since the resource it needs, is held by some other process which is also waiting for some other 

resource to be released. 

Let us assume that there are three processes P1, P2 and P3. There are three different resources 

R1, R2 and R3. R1 is assigned to P1, R2 is assigned to P2 and R3 is assigned to P3. 

 

Figure: 2.5 Deadlock Example 
 
 

 

 



 

 
 

A system model or structure consists of a fixed number of resources to be circulated among 

some opposing processes. The resources are then partitioned into numerous types, each 

consisting of some specific quantity of identical instances. Memory space, CPU cycles, 

directories and files, I/O devices like keyboards, printers and CD-DVD drives are prime 

examples of resource types. When a system has 2 CPUs, then the resource type CPU got two 

instances. 

Under the standard mode of operation, any process may use a resource in only the below- 

mentioned sequence: 

1. Request: When the request can't be approved immediately (where the case may be when 

another process is utilizing the resource), then the requesting job must remain waited until it 

can obtain the resource. 

2. Use: The process can run on the resource (like when the resource is a printer, its job/process 

is to print on the printer). 

3. Release: The process releases the resource (like, terminating or exiting any specific 

process). 

2.6.1 REAL TIME EXAMPLES OF DEADLOCK 

If a process is given the task of waiting for an event to occur, and if the system includes no 

provision for signaling that event, then we have a one process deadlock. Several common 

examples of deadlock are 

A Traffic Deadlock: 

A number of automobiles are attempting to drive through a busy section of the city, but the 

traffic has become completely jammed. Traffic comes to a halt, and it is necessary for the 

police to unwind the jam by slowly and carefully backing cars out of the area. Eventually the 

traffic begins to flow normally, but not without much annoyance, effort and the loss of 

considerable time. 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 
 

 

 

Figure: 2.6 Traffic Jam 
 

B. A simple resource deadlock: 

 

A simple examples of a resource deadlock is illustrated 
 

Figure: 2.7 Resource Deadlock 

 

This resource allocation graph shows two processes as rectangles and two resources as 

circles. An arrow from a resource to a process indicates that the resource belongs to, or has 

been allocated to the process. An arrow from a process to a resource indicates that the process 

is requesting, but has not yet been allocated, the resource. The diagram illustrates a 

 



 

 
 

deadlocked system: process A holds Resource 1 and needs Resource 2 to continue. Process B 

holds Resource 2 and needs Resource 1 to continue. Each process is waiting for the other to 

free a resource that it will not free until the other frees its resources that it will not do until the 

other from its resources , etc. This circular wait is characterized of deadlock systems. 

C. Deadlock in spooling systems: 

Spooling systems are often prone to deadlock. A spooling system is used to improve system 

throughput by disassociating a program from the slow operating speeds of devices such as 

printers. For example, if a program sending lines to the printer must wait for each line to be 

printed before it can transmit the next line, then the program will execute slowly. To speed 

the program’s executing, output lines are routed to a much faster device such as a disk drive 

where they are temporarily stored until they may be printed. In some spooling systems, the 

complete output from a program must be available before actual printing can begin. Thus 

several partially complete jobs generating print lines to a spool file could become deadlocked 

if the available space fills before any job completes. Unwinding or recovering from such a 

deadlock might involve restarting the system with a loss of all work performed so far. 

SIMPLE REVIEW 

1. Assuming that there are no cars beyond the ellipses in Fig. 2.3, what minimum 

number of cars would have to back up to relieve the deadlock and which car(s) 

would they be? 

In Fig. 2.3, only two cars would need to back up to allow every other car to eventually 

Move any one of the cars abutting an ellipsis, then the car ahead of that one in the 

intersection. 

2. If cars could be removed by airlifting in Fig. 2.3, what minimum number of cars, 

and which one(s), would have to be removed to relieve the deadlock? 

Only one car has to be removed—namely, any one of the four cars in the 

intersections. 

 DEADLOCK CHARACTERIZATION 

 NECESSARY CONDITIONS FOR DEADLOCKS 

A deadlock occurs if the four conditions hold true. But these conditions are not mutually 

exclusive. 

The Coffman conditions are given as follows: 
 
 



 

 
 

• Mutual Exclusion 

There should be a resource that can only be held by one process at a time. In the 

diagram below, there is a single instance of Resource 1 and it is held by Process 1 

only. 

 

 

 

 
• Hold and Wait 

Figure: 2.8 Mutual Exclusion 

A process can hold multiple resources and still request more resources from other 

processes which are holding them. In the diagram given below, Process 2 holds 

Resource 2 and Resource 3 and is requesting the Resource 1 which is held by 

Process 1. 

 

 

 

 
• No Preemption 

Figure: 2.9 Hold and Wait 

A resource cannot be preempted from a process by force. A process can only release 

a resource voluntarily. In the diagram below, Process 2 cannot preempt Resource 1 

from Process 1. It will only be released when Process 1 relinquishes it voluntarily 

after its execution is complete. 

 

 
 



 

 

Definition: A resource allocation graph tracks which resource is held by which 

process and which process is waiting for a resource of a particular type. It is very 

powerful and simple tool to illustrate how interacting processes can deadlock. 

 
 

 

 

 

 

 

 

• Circular Wait 

Figure: 2.10 No Preemption 

A process is waiting for the resource held by the second process, which is waiting for 

the resource held by the third process and so on, till the last process is waiting for a 

resource held by the first process. This forms a circular chain. For example: Process 

1 is allocated Resource2 and it is requesting Resource 1. Similarly, Process 2 is 

allocated Resource 1 and it is requesting Resource 2. This forms a circular wait loop. 

 

 
Figure: 2.11 Circular Wait 

 

 RESOURCE – ALLOCATION GRAPH 
 
 

 

 



 

 
 

The resource allocation graph is the pictorial representation of the state of a system. As its 

name suggests, the resource allocation graph is the complete information about all the 

processes which are holding some resources or waiting for some resources. 

It also contains the information about all the instances of all the resources whether they are 

available or being used by the processes. 

In Resource allocation graph, the process is represented by a Circle while the Resource is 

represented by a rectangle. 

In RAG vertices are two types – 

1. Process vertex – Every process will be represented as a process vertex. Generally, the 

process will be represented with a circle. 

2. Resource vertex – Every resource will be represented as a resource vertex. It is also 

two types – 

• Single instance type resource – It represents as a box, inside the box, there will be one 

dot. So the number of dots indicates how many instances are present of each resource 

type. 

• Multi-resource instance type resource – It also represents as a box, inside the box, there 

will be many dots present. 

 
 

Figure: 2.12 Process and Resources 

Vertices are mainly of two types, Resource and process. Each of them will be represented by 

a different shape. Circle represents process while rectangle represents resource. 



 

 
 

A resource can have more than one instance. Each instance will be represented by a dot 

inside the rectangle. 

 
 

Figure: 2.13 Edges 

Edges in RAG are also of two types, one represents assignment and other represents the wait 

of a process for a resource. The above image shows each of them. 

A resource is shown as assigned to a process if the tail of the arrow is attached to an instance 

to the resource and the head is attached to a process. 

A process is shown as waiting for a resource if the tail of an arrow is attached to the process 

while the head is pointing towards the resource. 

 
 

Figure: 2.14 Resource to process Allocation 
 

 



 

 
 

Example 

Let's consider 3 processes P1, P2 and P3, and two types of resources R1 and R2. The 

resources are having 1 instance each. 

According to the graph, R1 is being used by P1, P2 is holding R2 and waiting for R1, P3 is 

waiting for R1 as well as R2. 

The graph is deadlock free since no cycle is being formed in the graph. 
 

 

Figure: 2.15 Resource Allocation Graph 

If a cycle is being formed in a Resource allocation graph where all the resources have the 

single instance then the system is deadlocked. 

In Case of Resource allocation graph with multi-instanced resource types, Cycle is a 

necessary condition of deadlock but not the sufficient condition. 

The following example contains three processes P1, P2, P3 and three resources R2, R2, R3. 

All the resources are having single instances each. 

 

Figure: 2.16 Resource Allocation Graph with Deadlock 

 



 

 
 

 

 

Figure: 2.17 Resource Allocation Graph with a cycle but no Deadlock 

 METHODS FOR HANDLING DEADLOCK 

Generally speaking there are three ways of handling deadlocks: 

• Deadlock prevention or avoidance - Do not allow the system to get into a deadlocked 

state. 

• Deadlock detection and recovery - Abort a process or preempt some resources when 

deadlocks are detected. 

• Ignore the problem all together - If deadlocks only occur once a year or so, it may be 

better to simply let them happen and reboot as necessary than to incur the constant 

overhead and system performance penalties associated with deadlock prevention or 

detection. This is the approach that both Windows and UNIX take. 

In order to avoid deadlocks, the system must have additional information about all processes. 

In particular, the system must know what resources a process will or may request in the 

future. (Ranging from a simple worst-case maximum to a complete resource request and 

release plan for each process, depending on the particular algorithm.) 

Deadlock detection is fairly straightforward, but deadlock recovery requires either aborting 

processes or preempting resources, neither of which is an attractive alternative. 

If deadlocks are neither prevented nor detected, then when a deadlock occurs the system will 

gradually slow down, as more and more processes become stuck waiting for resources 



 

 
 

currently held by the deadlock and by other waiting processes. Unfortunately this slowdown 

can be indistinguishable from a general system slowdown when a real-time process has heavy 

computing needs. 

 DEADLOCK PREVENTION 

Deadlocks can be prevented by preventing at least one of the four required conditions: 

 Mutual Exclusion 

• Shared resources such as read-only files do not lead to deadlocks. 

• Unfortunately some resources, such as printers and tape drives, require exclusive 

access by a single process. 

 Hold and Wait 

• To prevent this condition processes must be prevented from holding one or more 

resources while simultaneously waiting for one or more others. There are several 

possibilities for this: 

o Require that all processes request all resources at one time. This can be 

wasteful of system resources if a process needs one resource early in its 

execution and doesn't need some other resource until much later. 

o Require that processes holding resources must release them before requesting 

new resources, and then re-acquire the released resources along with the new 

ones in a single new request. This can be a problem if a process has partially 

completed an operation using a resource and then fails to get it re-allocated 

after releasing it. 

o Either of the methods described above can lead to starvation if a process 

requires one or more popular resources. 

 No Preemption 

• Preemption of process resource allocations can prevent this condition of deadlocks, 

when it is possible. 

o One approach is that if a process is forced to wait when requesting a new 

resource, then all other resources previously held by this process are implicitly 

released, ( preempted ), forcing this process to re-acquire the old resources 

along with the new resources in a single request, similar to the previous 

discussion. 

 
 



 

 
 

o Another approach is that when a resource is requested and not available, then 

the system looks to see what  other  processes  currently  have  those  

resources and are themselves blocked waiting for some other resource. If such 

a process is found, then some of their resources may get preempted and added 

to the list of resources for which the process is waiting. 

o Either of these approaches may be applicable for resources whose states are 

easily saved and restored, such as registers and memory, but are generally not 

applicable to other devices such as printers and tape drives. 

 Circular Wait 

• One way to avoid circular wait is to number all resources, and to require that 

processes request resources only in strictly increasing ( or decreasing ) order. 

• In other words, in order to request resource Rj, a process must first release all Ri such 

that i >= j. 

• One big challenge in this scheme is determining the relative ordering of the different 

resources 

 DEADLOCK AVOIDANCE 

• The general idea behind deadlock avoidance is to prevent deadlocks from ever 

happening, by preventing at least one of the aforementioned conditions. 

• This requires more information about each process, AND tends to lead to low device 

utilization. (i.e. it is a conservative approach. ) 

• In some algorithms the scheduler only needs to know the maximum number of each 

resource that a process might potentially use. In more complex algorithms the 

scheduler can also take advantage of the schedule of exactly what resources may be 

needed in what order. 

• When a scheduler sees that starting a process or granting resource requests may lead 

to future deadlocks, then that process is just not started or the request is not granted. 

• A resource allocation state is defined by the number of available and allocated 

resources and the maximum requirements of all processes in the system. 

 Safe State 

• A state is safe if the system can allocate all resources requested by all processes (up to 

their stated maximums) without entering a deadlock state. 

 
 



 

 

P0 

P1 

P2 

 

Maximum Needs Current Allocation 

10 5 

4 2 

9 2 

 

 
 

• More formally, a state is safe if there exists a safe sequence of processes {P0, P1, P2, 

..., Pn } such that all of the resource requests for Pi can be granted using the resources 

currently allocated to Pi and all processes Pj where j < i. (i.e. if all the processes prior 

to Pi finish and free up their resources, then Pi will be able to finish also, using the 

resources that they have freed up. ) 

• If  a  safe  sequence  does  not  exist,  then  the  system  is  in  an  unsafe  state,   

which MAY lead to deadlock. (All safe states are deadlock free, but not all unsafe 

states lead to deadlocks.) 

 
 

Figure 2.18 - Safe, unsafe, and deadlocked state spaces. 

• For example, consider a system with 12 tape drives, allocated as follows. Is this a safe 

state? What is the safe sequence? 

• What happens to the above table if process P2 requests and is granted one more tape 

drive? 

• Key to the safe state approach is that when a request is made for resources, the request 

is granted only if the resulting allocation state is a safe one. 

 

 

 

 
 



 

 
 

 Resource-Allocation Graph Algorithm 

• If resource categories have only single instances of their resources, then deadlock 

states can be detected by cycles in the resource-allocation graphs. 

• In this case, unsafe states can be recognized and avoided by augmenting the resource- 

allocation graph with claim edges, noted by dashed lines, which point from a process 

to a resource that it may request in the future. 

• In order for this technique to work, all claim edges must be added to the graph for any 

particular process before that process is allowed to request any resources. 

(Alternatively, processes may only make requests for resources for which they have 

already established claim edges, and claim edges cannot be added to any process that 

is currently holding resources.) 

• When a process makes a request, the claim edge Pi->Rj is converted to a request edge. 

Similarly when a resource is released, the assignment reverts back to a claim edge. 

• This approach works by denying requests that would produce cycles in the resource- 

allocation graph, taking claim edges into effect. 

• Consider for example what happens when process P2 requests resource R2: 
 

 
Figure 2.19 - Resource allocation graph for deadlock avoidance 

• The resulting resource-allocation graph would have a cycle in it, and so the request 

cannot be granted. 

 

 

 

 

 

 



 

 
 

 

 

Figure 2.20 - An unsafe state in a resource allocation graph 

 Banker's Algorithm 

• For resource categories that contain more than one instance the resource-allocation 

graph method does not work, and more complex (and less efficient) methods must be 

chosen. 

• The Banker's Algorithm gets its name because it is a method that bankers could use to 

assure that when they lend out resources they will still be able to satisfy all their 

clients. (A banker won't loan out a little money to start building a house unless they 

are assured that they will later be able to loan out the rest of the money to finish the 

house.) 

• When a process starts up, it must state in advance the maximum allocation of 

resources it may request, up to the amount available on the system. 

• When a request is made, the scheduler determines whether granting the request would 

leave the system in a safe state. If not, then the process must wait until the request can 

be granted safely. 

• The banker's algorithm relies on several key data structures: (where n is the number of 

processes and m is the number of resource categories.) 

o Available[m] indicates how many resources are currently available of each 

type. 

o Max[n][m] indicates the maximum demand of each process of each resource. 

o Allocation[n][m] indicates the number of each resource category allocated to 

each process. 

o Need[n][m] indicates the remaining resources needed of each type for each 

process. ( Note that Need[ i ][ j ] = Max[ i ][ j ] - Allocation[ i ][ j ] for all i, j. ) 

 



 

 
 

• For simplification of discussions, we make the following notations / observations: 

o One row of the Need vector, Need[i], can be treated as a vector corresponding 

to the needs of process i, and similarly for Allocation and Max. 

o A vector X is considered to be <= a vector Y if X[ i ] <= Y[ i ] for all i. 

 Safety Algorithm 

• In order to apply the Banker's algorithm, we first need an algorithm for determining 

whether or not a particular state is safe. 

• This algorithm determines if the current state of a system is safe, according to the 

following steps: 

1. Let Work and Finish be vectors of length m and n respectively. 

▪ Work is a working copy of the available resources, which will be 

modified during the analysis. 

▪ Finish is a vector of booleans indicating whether a particular process 

can finish. (or has finished so far in the analysis. ) 

▪ Initialize Work to Available, and Finish to false for all elements. 

2. Find an i such that both (A) Finish[ i ] == false, and (B) Need[ i ] < Work. 

This process has not finished, but could with the given available working set. 

If no such i exists, go to step 4. 

3. Set Work = Work + Allocation[ i ], and set Finish[ i ] to true. This corresponds 

to process i finishing up and releasing its resources back into the work pool. 

Then loop back to step 2. 

4. If finish[ i ] == true for all i, then the state is a safe state, because a safe 

sequence has been found. 

• ( JTB's Modification: 

1. In step 1. instead of making Finish an array of booleans initialized to false, 

make it an array of ints initialized to 0. Also initialize an int s = 0 as a step 

counter. 

2. In step 2, look for Finish[ i ] == 0. 

3. In step 3, set Finish[ i ] to ++s. S is counting the number of finished processes. 

4. For step 4, the test can be either Finish[ i ] > 0 for all i, or s >= n. The benefit 

of this method is that if a safe state exists, then Finish[ ] indicates one safe 

sequence ( of possibly many. ) ) 



 

 
 

 Resource-Request Algorithm (The Bankers Algorithm) 

• Now that we have a tool for determining if a particular state is safe or not, we are now 

ready to look at the Banker's algorithm itself. 

• This algorithm determines if a new request is safe, and grants it only if it is safe to do 

so. 

• When a request is made (that does not exceed currently available resources), pretend 

it has been granted, and then see if the resulting state is a safe one. If so, grant the 

request, and if not, deny the request, as follows: 

1. Let Request[ n ][ m ] indicate the number of resources of each type currently 

requested by processes. If Request[ i ] > Need[ i ] for any process i, raise an 

error condition. 

2. If Request[ i ] > Available for any process i, then that process must wait for 

resources to become available. Otherwise the process can continue to step 3. 

3. Check to see if the request can be granted safely, by pretending it has been 

granted and then seeing if the resulting state is safe. If so, grant the request, 

and if not, then the process must wait until its request can be granted safely. 

The procedure for granting a request ( or pretending to for testing purposes ) 

is: 

▪ Available = Available - Request 

▪ Allocation = Allocation + Request 

▪ Need = Need - Request 

 An Illustrative Example 

Consider a system with 5 processes (P0 ... P4) and 3 resources types (A(10) B(5) C(7)) 

Resource-allocation state at time t0: 

Process Allocation Max Need Available 

 A B C A B C A B C A B C 

P0 0 1 0 7 5 3 7 4 3 3 3 2 

P1 2 0 0 3 2 2 1 2 2   

P2 3 0 2 9 0 2 6 0 0   

P3 2 1 1 2 2 2 0 1 1   

P4 0 0 2 4 3 3 4 3 1   

 
Is the system in a safe state? If so, which sequence satisfies the safety criteria? 

 



 

 
• Definition: Deadlock detection is the process of determining that a deadlock exists 

• and identifying the processes and resources involved in the deadlock. 

• 

 
 

< P1, P3, P4, P2, P0 > 

 

Now suppose, P1 requests an additional instance of A and 2 more instances of type C. 

request[1] = (1,0,2) 

1. check if request[1] <= need[i] (yes) 

2. check if request[1] <= available[i] (yes) 

3. do pretend updates to the state 
 

Process Allocation Max Need Available 

 A B C A B C A B C A B C 

P0 0 1 0 7 5 3 7 4 3 3 3 2 

P1    3  0 2 3 2 2    0  2 0   

P2 3 0 2 9 0 2 6 0 0   

P3 2 1 1 2 2 2 0 1 1   

P4 0 0 2 4 3 3 4 3 1   

Is the system in a safe state? If so, which sequence satisfies the safety criteria? 

<P1, P3, P4, P0, P2> 

Hence, we immediately grant the request. 

 Do it Yourself 

Will a request of (3,3,0) by P4 be granted? 

Will a request of (0,2,0) by P0 be granted? 

 DEADLOCK DETECTION 
 

• If deadlocks are not avoided, then another approach is to detect when they have 

occurred and recover somehow. 

• In addition to the performance hit of constantly checking for deadlocks, a policy / 

algorithm must be in place for recovering from deadlocks, and there is potential for 

lost work when processes must be aborted or have their resources preempted. 

 Single Instance of Each Resource Type 

• If each resource category has a single instance, then we can use a variation of the 

resource-allocation graph known as a wait-for graph. 

 



 

 
 

• A wait-for graph can be constructed from a resource-allocation graph by eliminating 

the resources and collapsing the associated edges, as shown in the figure below. 

• An arc from Pi to Pj in a wait-for graph indicates that process Pi is waiting for a 

resource that process Pj is currently holding. 

 

Figure 2.21 - (a) Resource allocation graph. (b) Corresponding wait-for graph 

• As before, cycles in the wait-for graph indicate deadlocks. 

• This algorithm must maintain the wait-for graph, and periodically search it for cycles. 

 Several Instances of a Resource Type 

• The detection algorithm outlined here is essentially the same as the Banker's 

algorithm, with two subtle differences: 

o In step 1, the Banker's Algorithm sets Finish[ i ] to false for all i. The 

algorithm presented here sets Finish[ i ] to false only if Allocation[ i ] is not 

zero. If the currently allocated resources for this process are zero, the 

algorithm sets Finish[ i ] to true. This is essentially assuming that IF all of the 

other processes can finish, then this process can finish also. Furthermore, this 

algorithm is specifically looking for which processes are involved in a 

deadlock situation, and a process that does not have any resources allocated 

 

 



 

 
 

cannot be involved in a deadlock, and so can be removed from any further 

consideration. 

o Steps 2 and 3 are unchanged 

o In step 4, the basic Banker's Algorithm says that if Finish[ i ] == true for all i, 

that there is no deadlock. This algorithm is more specific, by stating that if 

Finish[ i ] == false for any process Pi, then that process is specifically 

involved in the deadlock which has been detected. 

• (Note: An alternative method was presented above, in which Finish held integers 

instead of booleans. This vector would be initialized to all zeros, and then filled with 

increasing integers as processes are detected which can finish. If any processes are left 

at zero when the algorithm completes, then there is a deadlock, and if not, then the 

integers in finish describe a safe sequence. To modify this algorithm to match this 

section of the text, processes with allocation = zero  could be filled in with N, N - 1,  

N - 2, etc. in step 1, and any processes left with Finish = 0 in step 4 are the  

deadlocked processes. ) 

• Consider, for example, the following state, and determine if it is currently deadlocked: 
 

• Now suppose that process P2 makes a request for an additional instance of type C, 

yielding the state shown below. Is the system now deadlocked? 

 

 

 

 

 

 

 

 

 

 
 



 

 
 

 

 Detection-Algorithm Usage 

• When should the deadlock detection be done? Frequently, or infrequently? 

• The answer may depend on how frequently deadlocks are expected to occur, as well 

as the possible consequences of not catching them immediately. ( If deadlocks are not 

removed immediately when they occur, then more and more processes can "back up" 

behind the deadlock, making the eventual task of unblocking the system more 

difficult and possibly damaging to more processes. ) 

• There are two obvious approaches, each with trade-offs: 

1. Do deadlock detection after every resource allocation which cannot be 

immediately granted. This has the advantage of detecting the deadlock right 

away, while the minimum numbers of processes are involved in the deadlock. 

( One might consider that the process whose request triggered the deadlock 

condition is the "cause" of the deadlock, but realistically all of the processes in 

the cycle are equally responsible for the resulting deadlock. ) The down side of 

this approach is the extensive overhead and performance hit caused by 

checking for deadlocks so frequently. 

2. Do deadlock detection only when there is some clue that a deadlock may have 

occurred, such as when CPU utilization reduces to 40% or some other magic 

number. The advantage is that deadlock detection is done much less 

frequently, but the down side is that it becomes impossible to detect the 

processes involved in the original deadlock, and so deadlock recovery can be 

more complicated and damaging to more processes. 

3. (As I write this, a third alternative comes to mind: Keep a historical log of 

resource allocations, since that last known time of no deadlocks. Do deadlock 

 



 

 
 

checks periodically (Once an hour or when CPU usage is low?), and then use 

the historical log to trace through and determine when the deadlock occurred 

and what processes caused the initial deadlock. Unfortunately I'm not certain 

that breaking the original deadlock would then free up the resulting log jam. ) 

 Weaknesses in the Banker's Algorithm 

The Banker's Algorithm is compelling because it allows processes to proceed that might 

have had to wait under a deadlock prevention situation. But the algorithm has a number of 

weaknesses. 

• It requires that there be a fixed number of resources to allocate. Because resources 

frequently require service, due to breakdowns or preventive maintenance, we cannot 

count on the number of resources remaining fixed. Similarly, operating systems that 

support hot swappable devices (e.g., USB devices) allow the number of resources to 

vary dynamically. 

• The algorithm requires that the population of processes remains fixed. This, too, is 

unreasonable. In today's interactive and multiprogrammed systems, the process 

population is constantly changing. 

• The algorithm requires that the banker (i.e., the system) grant all requests within a 

"finite time." Clearly, much better guarantees than this are needed in real systems, 

especially real-time systems. 

• Similarly, the algorithm requires that clients (i.e., processes) repay all loans (i.e., 

return all resources) within a "finite time." Again, much better guarantees than this are 

needed in real systems. 

• The algorithm requires that processes state their maximum needs in advance. With 

resource allocation becoming increasingly dynamic, it is becoming more difficult to 

know a process's maximum needs. Indeed, one main benefit of today's high-level 

programming languages and "friendly" graphical user interfaces is that users are not 

required to know such low level details as resource use. The user or programmer 

expects the system to "print the file" or "send the message" and should not need to 

worry about what resources the system might need to employ to honor such requests. 

For the reasons stated above, Banker's Algorithm is not implemented in today's operating 

systems. In fact, few systems can afford the overhead incurred by deadlock avoidance 

strategies. 



 

 
 

 

 RECOVERY FROM DEADLOCK 

There are three basic approaches to recovery from deadlock: 

1. Inform the system operator, and allow him/her to take manual intervention. 

2. Terminate one or more processes involved in the deadlock 

3. Preempt resources. 

 Process Termination 

Two basic approaches, both of which recover resources allocated to terminated 

processes: 

o Terminate all processes involved in the deadlock. This definitely solves the 

deadlock, but at the expense of terminating more processes than would be 

absolutely necessary. 

o Terminate processes one by one until the deadlock is broken. This is more 

conservative, but requires doing deadlock detection after each step. 

In the latter case there are many factors that can go into deciding which processes to 

terminate next: 

1. Process priorities. 

2. How long the process has been running, and how close it is to finishing. 

3. How many and what type of resources is the process holding. ( Are they easy 

to preempt and restore? ) 

4. How many more resources does the process need to complete. 

5. How many processes will need to be terminated 

6. Whether the process is interactive or batch. 

7. (Whether or not the process has made non-restorable changes to any resource.) 

 Resource Preemption 

• When preempting resources to relieve deadlock, there are three important issues to be 

addressed: 

1. Selecting a victim - Deciding which resources to preempt from which 

processes involves many of the same decision criteria outlined above. 

2. Rollback - Ideally one would like to roll back a preempted process to a safe 

state prior to the point at which that resource was originally allocated to the 

process. Unfortunately it can be difficult or impossible to determine what such 

 



 

 
 

a safe state is, and so the only safe rollback is to roll back all the way back to 

the beginning. (i.e. abort the process and make it start over. ) 

3. Starvation - How do you guarantee that a process won't starve because its 

resources are constantly being preempted? One option would be to use a 

priority system, and increase the priority of a process every time its resources 

get preempted. Eventually it should get a high enough priority that it won't get 

preempted any more. 

 TWO MARKS QUESTIONS AND ANSWERS 

1. Define deadlock. 

A process requests resources; if the resources are not available at that time, the process enters 

a wait state. Waiting processes may never again change state, because the resources they have 

requested are held by other waiting processes. This situation is called a deadlock. 

2. What is the sequence in which resources may be utilized? 

Under normal mode of operation a process may utilize a resource in the following sequence: 

• Request: If the request cannot be granted immediately, then the requesting process 

must wait until it can acquire the resource. 

• Use: The process can operate on the resource. 

• Release: The process releases the resource. 

3. What are conditions under which a deadlock situation may arise? 

A deadlock situation can arise if the following four conditions hold simultaneously in a 

system: 

• Mutual exclusion 

• Hold and wait 

• No pre-emption 

• Circular wait 

4. What is a resource-allocation graph? 

Resource allocation graph is directed graph which is used to describe deadlocks. This graph 

consists of a set of vertices V and a set of edges E. The set of vertices V is partitioned into 

two different types of nodes; P the set consisting of all active processes in the system and R 

the set consisting of all resource types in the system. 

5. Define request edge and assignment edge. 
 

 



 

 
 

A directed edge from process Pi to resource type Rj (denoted by Pi → Rj) is called as request 

edge; it signifies that process Pi requested an instance of resource type Rj and is currently 

waiting for that resource. A directed edge from resource type Rj to process Pi (denoted by  Rj 

→ Pi) is called an assignment edge; it signifies that an instance of resource type has been 

allocated to a process Pi. 

6. What are the methods for handling deadlocks? 

The deadlock problem can be dealt with in one of the three ways: 

1. Use a protocol to prevent or avoid deadlocks, ensuring that the system will never enter 

a deadlock state. 

2. Allow the system to enter the deadlock state, detect it and then recover. 

3. Ignore the problem all together, and pretend that deadlocks never occur in the system. 

 REVIEW QUESTIONS AND ANSWERS 

1. Suppose a spooling system has a saturation threshold of 75 percent and limits the 

maximum size of each file to 25 percent of the total spooling file size. Could deadlock occur 

in this system? 

Ans: Yes, deadlock can still occur in this system. For instance, several jobs can begin 

transferring their outputs. When the spooling file reaches the 75 percent threshold, new jobs 

are not allowed. However, jobs that have begun are allowed to continue spooling, which may 

result in deadlock if there is insufficient space in the spooling file. 

2. Suppose a spooling system has a saturation threshold of 75 percent and limits the 

maximum size of each file to 25 percent of the total spooling file size. Describe a simple way 

to ensure that deadlock will never occur in the system. Explain how this could lead to 

inefficient resource allocation. 

Ans: A simple adjustment would be to allow only one job to continue spooling data when the 

file reaches the threshold. This would be inefficient because it would limit the maximum job 

size to much less than the available spooling space. 

3. Describe how the four necessary conditions for deadlock apply to spooling systems. 

Ans: No two jobs can simultaneously write data to the same location in the spooling file. 

Partially spooled jobs remain in the spooling file until more space is available. Jobs 

cannot remove other jobs from the spooling file. Finally, when the spooling file is full, 

each job waits for all of the other jobs to free up space. 

4. Compare and contrast deadlock prevention and deadlock avoidance. 



 

 
 

Ans: Deadlock prevention makes deadlock impossible but results in lower resource 

utilization. With deadlock avoidance, when the threat of deadlock approaches, it is 

sidestepped and resource utilization is higher. Systems using either deadlock prevention or 

deadlock avoidance will be free of deadlocks. 

5. Some systems ignore the problem of deadlock. Discuss the costs and benefits of this 

approach. 

Ans: Systems that ignore deadlock may fail when deadlock occurs. This is an unacceptable 

risk in mission-critical systems, but it may be appropriate in other systems where deadlocks 

rarely occur and the "cost" of dealing with an occasional deadlock is lower than the costs of 

implementing deadlock prevention or avoidance schemes. 

6. (T/F) An unsafe state is a deadlocked state. 

Ans: False. A process in an unsafe state might eventually deadlock, or it might complete its 

execution without entering deadlock. What makes the state unsafe is simply that the operating 

system cannot guarantee that from this state all processes can complete their work. From an 

unsafe state, it is possible but not guaranteed that all processes could complete their work, so 

a system in an unsafe state could eventually deadlock. 

7. Describe the restrictions that the Banker's Algorithm places on processes. 

Each process, before it runs, is required to specify the maximum number of resources it may 

require at any point during its execution. Each process cannot request more than the total 

number of resources in the system. Each process must also guarantee that once allocated a 

resource, the process will eventually return that resource to the system within a finite time. 

8. Why is deadlock possible, but not guaranteed, when a system enters an unsafe state? 

Ans: Processes could give back their resources early, increasing the number of available 

resources to the point that the state of the system was once again safe and all other processes 

could finish 

9. Why does the Banker's Algorithm fail in systems that support hot swappable devices? 

Ans: The Banker's Algorithm requires that the number of resources of each type remain 

fixed. Hot swappable devices can be added and removed from the system at any time, 

meaning that the number of resources of each type can vary. 

10. Suppose a process has control of a resource of type R1. Does it matter which small 

circle points to the process in the resource-allocation graph? 

 
 



 

 
 

Ans: No; all resources of the same type must provide identical functionality, so it does not 

matter which small circle within the circle R1 points to the process. 

11. What necessary condition for deadlock is easier to identify in a resource-allocation 

graph than it is to locate by analyzing the resource-allocation data of all the system's 

processes? 

Ans: Resource-allocation graphs make it easier to identify circular waits. 

12. Why might deadlock detection be a better policy than either deadlock prevention or 

deadlock avoidance? Why might it be a worse policy? 

Ans: In general, deadlock detection places fewer restrictions on resource allocation, thereby 

increasing resource utilization. However, it requires that the deadlock detection algorithm be 

performed regularly, which can incur significant overhead. 

13. Suppose a system attempts to reduce deadlock detection overhead by performing 

deadlock detection only when there are a large number of processes in the system. What is 

one drawback to this strategy? 

Ans: Because deadlock can occur between two processes, the system might not ever detect 

some deadlocks if the number of processes in the system is small. 

 KEY TERMS 

circular wait—Condition for deadlock that occurs when two or more processes are locked in 

a "circular chain," in which each process in the chain is waiting for one or more resources  

that the next process in the chain is holding. 

circular-wait necessary condition for deadlock—One of the four necessary conditions for 

deadlock; states that if a deadlock exists, there will be two or more processes in a circular 

chain such that each process is waiting for a resource held by the next process in the chain. 

deadline scheduling—Scheduling a process or thread to complete by a definite time; the 

priority of the process or thread may need to be increased as its completion deadline 

approaches. 

deadlock—Situation in which a process or thread is waiting for an event that will never 

occur. 

deadlock avoidance—Strategy that eliminates deadlock by allowing a system to approach 

deadlock, but ensuring that deadlock never occurs. Avoidance algorithms can achieve higher 

performance than deadlock prevention algorithms. 

 
 



 

 
 

deadlock detection—Process of determining whether or not a system is deadlocked. Once 

detected, a deadlock can be removed from a system, typically resulting in loss of work. 

deadlock prevention—Process of disallowing deadlock by eliminating one of the four 

necessary conditions for deadlock. 

deadlock recovery—Process of removing a deadlock from a system. This can involve 

suspending a process temporarily (and preserving its work) or sometimes killing a process 

(thereby losing its work) and restarting it. 

dedicated resource—Resource that may be used by only one process at a time. Also known 

as a serially reusable resource. 

Banker's Algorithm—Deadlock avoidance algorithm that controls resource allocation based 

on the amount of resources owned by the system, the amount of resources owned by each 

process and the maximum amount of resources that the process will request during execution. 

Allows resources to be assigned to processes only when the allocation results in a safe state. 

graph reduction—Altering a resource-allocation graph by removing a process if that process 

can complete. This also involves removing any arrows leading to the process (from the 

resources allocated to the process) or away from the process (to resources the process is 

requesting). A resource-allocation graph can be reduced by a process if all of that process's 

resource requests can be granted, enabling that process to run to completion and free its 

resources. 

maximum need (Dijkstra's Banker's Algorithm) —Characteristic of a process in Dijkstra's 

Banker's Algorithm that describes the largest number of resources (of a particular type) the 

process will need during execution. 

mutual exclusion necessary condition for deadlock—One of the four necessary conditions 

for deadlock; states that deadlock can occur only if processes cannot claim exclusive use of 

their resources. 

necessary condition for deadlock—Condition that must be true for deadlock to occur. The 

four necessary conditions are the mutual exclusion condition, no-preemption condition, wait- 

for condition and circular-wait condition. 

no-preemption necessary condition for deadlock—One of the four necessary conditions 

for deadlock; states that deadlock can occur only if resources cannot be forcibly removed 

from processes. 

 
 



 

 
 

nonpreemptible resource—Resource that cannot be forcibly removed from a process, e.g., a 

tape drive. Such resources are the kind that can become involved in deadlock. 

preemptible resource—Resource that may be removed from a process such as a processor  

or memory. Such resources cannot be involved in deadlock. 

reentrant code—Code that cannot be changed while in use and therefore can be shared 

among processes and threads. 

resource allocation graph—Graph that shows processes and resources in a system. An 

arrow pointing from a process to a resource indicates that the process is requesting the 

resource. An arrow pointing from a resource to a process indicates that the resource is 

allocated to the process. Such a graph helps determine if a deadlock exists and. If so, helps 

identify the processes and resources involved in the deadlock. 

resource type —Grouping of resources that perform a common task. 

safe state—State of a system in Dijkstra's Banker's Algorithm in which there exists a 

sequence of actions that will allow every process in the system to finish without the system 

becoming deadlocked. 

shared resource—Resource that can be accessed by more than one process. starvation—

Situation in which a thread waits for an event that might never occur, also called indefinite 

postponement. 

sufficient conditions for deadlock—The four conditions mutual exclusion, no-preemption, 

wait-for and circular wait-which are necessary and sufficient for deadlock. 

suspend/resume—Method of halting a process, saving its state, releasing its resources to 

other processes, then restoring its resources after the other processes have released them. 

transaction—Atomic, mutually exclusive operation that either completes or is rolled back. 

Modifications to database entries are often performed as transactions to enable high 

performance and reduce the cost of deadlock recovery. 

unsafe state—State of a system in Dijkstra's Banker's Algorithm that might eventually lead 

to deadlock because there might not be enough resources to allow any process to finish. 

wait-for condition—One of the four necessary conditions for deadlock; states that deadlock 

can occur only if a processis allowed to wait for a resource while it holds another. 

 EXPLANATORY QUESTIONS 

1. Define deadlock. 

2. Give an example of a deadlock involving only a single process and a single resource. 



 

 
 

3. Give an example of a simple resource deadlock involving three processes and three 

resources. Draw the appropriate resource – allocation graph 

4. Define and discuss each of the following resource concepts. 

a. preemptible resource 

b. nonpreemptible resource 

c. shared resource 

d. dedicated resource 

e. reentrant code 

f. serially reusable code 

g. dynamic resource allocation 

5. State the four necessary conditions for a deadlock to exist. Give a brief intuitive 

argument for the necessity of each individual condition. 

6. Explain the intuitive appeal of deadlock avoidance over deadlock prevention. 

7. The fact that a state is unsafe does not necessarily imply that the system will 

deadlock. Explain why this is true. Give an example of an unsafe state and show how 

all of the processes could complete without a deadlock occurring. 

8. Dijkstra's Banker's Algorithm has a number of weaknesses that preclude its effective 

use in real systems. Comment on why each of the following restrictions may be 

considered a weakness in the Banker's Algorithm. 

a. The number of resources to be allocated remains fixed. 

b. The population of processes remains fixed. 

c. The operating system guarantees that resource 

requests will be serviced in a finite time. 

d. Users guarantee that they will return held resources 

within a finite time. 

e. Users must state maximum resource 

9. In a system in which it is possible for a deadlock to occur, under what circumstances 

would you use a deadlock detection algorithm? 

10. In the deadlock detection algorithm employing the technique of graph reductions, 

show that the order of the graph reductions does not matter, the same final state will 

result. 

 
 



 

 
 

[Hint: No matter what the order, after each reduction, the available resource pool 

increases.] 

11. Why is deadlock recovery such a difficult problem? 

12. Why is it difficult to choose which processes to "flush" in deadlock recovery? 

 EXERCISE PROBLEMS AND SOLUTIONS 

1. Consider three process, all arriving at time zero, with total execution time of 10, 20 and 

30 units respectively. Each process spends the first 20% of execution time doing I/O, 

the next 70% of time doing computation, and the last 10% of time doing I/O again. The 

operating system uses a shortest remaining compute time first scheduling algorithm 

and schedules a new process either when the running process gets blocked on I/O or 

when the running process finishes its compute burst. Assume that all I/O operations can 

be overlapped as much as possible. For what percentage of does the CPU remain idle? 

1.0% 2. 10.6% 3. 0.0% 4. 89.4% 

Solution- 

According to question, we have- 
 

 Total Burst Time I/O Burst CPU Burst I/O Burst 

Process P1 10 2 7 1 

Process P2 20 4 14 2 

Process P3 30 6 21 3 

Gantt Chart- 
 

Percentage of time CPU remains idle 

= (5 / 47) x 100 

= 10.638% 

Thus, Option (B) is correct. 
 

 
 



2. Consider the set of 4 processes whose arrival time and burst time are given below- 

 

 

Process No. Arrival Time 
Burst Time 

CPU Burst I/O Burst CPU Burst 

P1 0 3 2 2 

P2 0 2 4 1 

P3 2 1 3 2 

P4 5 2 2 1 

If the CPU scheduling policy is Shortest Remaining Time First, calculate the average 

waiting time and average turn around time. 

Solution 

Gantt Chart 
 

Now, we know- 

• Turn Around time = Exit time – Arrival time 

• Waiting time = Turn Around time – Burst time 

Also read- Various Times Of Process 
 

Process Id Exit time Turn Around time Waiting time 

P1 11 11 – 0 = 11 11 – (3+2) = 6 

P2 7 7 – 0 = 7 7 – (2+1) = 4 

P3 9 9 – 2 = 7 7 – (1+2) = 4 

P4 16 16 – 5 = 11 11 – (2+1) = 8 

 
• Average Turn Around time = (11 + 7 + 7 + 11) / 4 = 36 / 4 = 9 units 

• Average waiting time = (6 + 4 + 4 + 8) / 4 = 22 / 5 = 4.4 units 

 

 

 



3. Consider the set of 4 processes whose arrival time and burst time are given below- 

 

 

Process No. 
Arrival 

Time 
Priority 

Burst Time 

CPU Burst I/O Burst CPU Burst 

P1 0 2 1 5 3 

P2 2 3 3 3 1 

P3 3 1 2 3 1 

If the CPU scheduling policy is Priority Scheduling, calculate the average waiting time and 

average turn around time. (Lower number means higher priority) 

Solution 

The scheduling algorithm used is Priority Scheduling. 

Gantt Chart 
 

Now, we know- 

• Turn Around time = Exit time – Arrival time 

• Waiting time = Turn Around time – Burst time 
 

Process Id Exit time Turn Around time Waiting time 

P1 10 10 – 0 = 10 10 – (1+3) = 6 

P2 15 15 – 2 = 13 13 – (3+1) = 9 

P3 9 9 – 3 = 6 6 – (2+1) = 3 

Now, 

• Average Turn Around time = (10 + 13 + 6) / 3 = 29 / 3 = 9.67 units 

• Average waiting time = (6 + 9 + 3) / 3 = 18 / 3 = 6 units 

 

 

 

 

 



 

 
 

4. Consider three processes (process id 0, 1, 2 respectively) with compute time bursts 2, 4 

and 8 time units. All processes arrive at time zero. Consider the longest remaining time 

first (LRTF) scheduling algorithm. In LRTF ties are broken by giving priority to the 

process with the lowest process id. The average turnaround time is: 

 
(A) 13 units (B) 14 units (C) 15units (D) 16units 

Answer: (A) 

Explanation: Let the processes be p0, p1 and p2. These processes will be executed in 

following order. 

p2 p1 p2 p1 p2 p0 p1 p2 p0 p1 p2 

 

0 4 5 6 7 8 9 10 11 12 13 14 

 

Turn around time of a process is total time between submission of the process and its 

completion. 

Turn around time of p0 = 12 (12-0) 

Turn around time of p1 = 13 (13-0) 

Turn around time of p2 = 14 (14-0) 

Average turn around time is (12+13+14)/3 = 13. 

 

5. Consider three processes, all arriving at time zero, with total execution time of 10, 20 

and 30 units, respectively. Each process spends the first 20% of execution time doing 

I/O, the next 70% of time doing computation, and the last 10% of time doing I/O again. 

The operating system uses a shortest remaining compute time first scheduling  

algorithm and schedules a new process either when the running process gets blocked 

on I/O or when the running process finishes its compute burst. Assume that all I/O 

operations can be overlapped as much as possible. For what percentage of time does 

the CPU remain idle? 

(A) 0% (B) 10.6% (C) 30.0% (D) 89.4% 

Answer: (B) 

Explanation: Let three processes be p0, p1 and p2. Their execution time is 10, 20 and 30 

respectively. p0 spends first 2 time units in I/O, 7 units of CPU time and finally 1 unit in I/O. 

 
 



 

 
 

p1 spends first 4 units in I/O, 14 units of CPU time and finally 2 units in I/O. p2 spends first 6 

units in I/O, 21 units of CPU time and finally 3 units in I/O. 

idle  p0 p1 p2 idle 

0 2 9  23  44  47 

Total time spent = 47 

Idle time = 2 + 3 = 5 

Percentage of idle time = (5/47)*100 = 10.6 % 

 

6. Consider three CPU-intensive processes, which require 10, 20 and 30 time units and 

arrive at times 0, 2 and 6, respectively. How many context switches are needed if the 

operating system implements a shortest remaining time first scheduling algorithm? Do 

not count the context switches at time zero and at the end. 

(A) 1 (B) 2 (C) 3 (D) 4 

Answer: (B) 

Explanation: Let three process be P0, P1 and P2 with arrival times 0, 2 and 6 respectively 

and CPU burst times 10, 20 and 30 respectively. At time 0, P0 is the only available process so 

it runs. At time 2, P1 arrives, but P0 has the shortest remaining time, so it continues. At time 

6, P2 arrives, but P0 has the shortest remaining time, so it continues. At time 10, P1 is 

scheduled as it is the shortest remaining time process. At time 30, P2 is scheduled. Only two 

context switches are needed. P0 to P1 and P1 to P2. 

7. Which of the following process scheduling algorithm may lead to starvation 

(A) FIFO (B) Round Robin 

(C) Shortest Job Next (D) None of the above 

Answer: (C) 

Explanation: Shortest job next may lead to process starvation for processes which will 

require a long time to complete if short processes are continually added. 

8. If the quantum time of round robin algorithm is very large, then it is equivalent to: 

(A) First in first out (B) Shortest Job Next 

(C) Lottery scheduling (D) None of the above 

Answer: (A) 

Explanation: If time quantum is very large, then scheduling happens according to FCFS. 

 



 

 
 

 

 
 

9. Which of the following is FALSE about SJF (Shortest Job First Scheduling)? 

 
S1: It causes minimum average waiting time 

S2: It can cause starvation 

(A) Only S1 (B)Only S2 

(C)Both S1 and S2 (D)Neither S1 nor S2 

Answer: (D) 

Explanation: 

1. Both SJF and Shortest Remaining time first algorithms may cause starvation. 

Consider a situation when long process is there in ready queue and shorter 

processes keep coming. 

2. SJF is optimal in terms of average waiting time for a given set of processes, but 

problems with SJF is how to know/predict time of next job. 

10. A single processor system has three resource types X, Y and Z, which are shared by 

three processes. There are 5 units of each resource type. Consider the following 

scenario, where the column alloc denotes the number of units of each resource type 

allocated to each process, and the column request denotes the number of units of each 

resource type requested by a process in order to complete execution. Which of these 

processes will finish LAST? 

1. P0 

2. P1 

3. P2 

4. None of the above since the system is in a deadlock 

 
Alloc Request 

 
X Y Z X Y Z 

P0 1 2 1 1 0 3 

P1 2 0 1 0 1 2 

P2 2 2 1 1 2 0 

 

       Solution- 



 

 
 

According to question- 

• Total = [ X Y Z ] = [ 5 5 5 ] 

•  Total _Alloc = [ X Y Z ] = [5 4 3] 

Now, 

Available 

= Total – Total_Alloc 

= [ 5 5 5 ] – [5 4 3] 

= [ 0 1 2 ] 

Step-01: 

• With the instances available currently, only the requirement of the process P1 can be 

satisfied. 

• So, process P1 is allocated the requested resources. 

•  It completes its execution and then free up the instances of resources held by it. 

Then, 

Available 

= [ 0 1 2 ] + [ 2 0 1] 

= [ 2 1 3 ] 

Step-02: 

• With the instances available currently, only the requirement of the process P0 can be 

satisfied. 

• So, process P0 is allocated the requested resources. 

•  It completes its execution and then free up the instances of resources held by it. 

Then- 

Available 

= [ 2 1 3 ] + [ 1 2 1 ] 

= [ 3 3 4 ] 

Step-03: 

• With the instances available currently, the requirement of the process P2 can be satisfied. 

• So, process P2 is allocated the requested resources. 

•  It completes its execution and then free up the instances of resources held by it. 

Then- 

Available 
 



 

 
 

= [ 3 3 4 ] + [ 2 2 1 ] 

= [ 5 5 5 ] 

Thus, 

• There exists a safe sequence P1, P0, P2 in which all the processes can be executed. 

• So, the system is in a safe state. 

•  Process P2 will be executed 

at last. Thus, Option (C) is correct. 

11. An operating system uses the banker’s algorithm for deadlock avoidance when managing 

the allocation of three resource types X, Y and Z to three processes P0, P1 and P2. The 

table given below presents the current system state. Here, the Allocation matrix shows the 

current number of resources of each type allocated to each process and the Max matrix 

shows the maximum number of resources of each type required by each process during its 

execution. 

 
Allocation Max 

 
X Y Z X Y Z 

P0 0 0 1 8 4 3 

 

P1 

 

3 
 

2 
 

0 
 

6 
 

2 
 

0 

P2 2 1 1 3 3 3 

 

There are 3 units of type X, 2 units of type Y and 2 units of type Z still available. The system 

is currently in safe state. Consider the following independent requests for additional resources 

in the current state- 

REQ1: P0 requests 0 units of X, 0 units of Y and 2 units of Z 

REQ2: P1 requests 2 units of X, 0 units of Y and 0 units of Z 

Which of the following is TRUE? 

1. Only REQ1 can be permitted 

2. Only REQ2 can be permitted 

3. Both REQ1 and REQ2 can be permitted 

4. Neither REQ1 nor REQ2 can be permitted 

Solution- 

According to question, 
 

        Available = [ X Y Z ] = [ 3 2 2 ] 



 

 
 

Now, 

Need = Max – Allocation 

So, we have- 

 

 

 

 

 

 

 

 

 

 
 

Currently, the system is in safe state. 

(It is given in question. If we want, we can check) 

Checking Whether REQ1 Can Be Entertained- 

• Need of P0 = [ 0 0 2 ] 

•  Available = [ 3 2 2 ] 

Clearly, 

• With the instances available currently, the requirement of REQ1 can be satisfied. 

• So, banker’s algorithm assumes that the request REQ1 is entertained. 

• It then modifies its data structures as- 

 
Allocation Max Need 

 
X Y Z X Y Z X Y Z 

P0 0 0 3 8 4 3 8 4 0 

P1 3 2 0 6 2 0 3 0 0 

P2 2 1 1 3 3 3 1 2 2 

 

Available 

= [ 3 2 2 ] – [ 0 0 2 ] 

= [ 3 2 0 ] 

• Now, it follows the safety algorithm to check whether this resulting state is a safe state 

or not. 

 

 
Allocation Max Need 

 
X Y Z X Y Z X Y Z 

P0 0 0 1 8 4 3 8 4 2 

P1 3 2 0 6 2 0 3 0 0 

P2 2 1 1 3 3 3 1 2 2 

 



 

 
 

• If it is a safe state, then REQ1 can be permitted otherwise not. 

Step-01: 

• With the instances available currently, only the requirement of the process P1 can be 

satisfied. 

• So, process P1 is allocated the requested resources. 

•  It completes its execution and then free up the instances of resources held by it. 

Then- 

Available 

= [ 3 2 0 ] + [ 3 2 0 ] 

= [ 6 4 0 ] 

Now, 

• It is not possible to entertain any process. 

• The system has entered the deadlock state which is an unsafe state. 

•  Thus, REQ1 will not be permitted.  

Checking Whether REQ2 Can Be Entertained- 

• Need of P1 = [ 2 0 0 ] 

•  Available = [ 3 2 2 ] 

Clearly, 

• With the instances available currently, the requirement of REQ1 can be satisfied. 

• So, banker’s algorithm assumes the request REQ2 is entertained. 

• It then modifies its data structures as- 

 
Allocation Max Need 

 
X Y Z X Y Z X Y Z 

P0 0 0 1 8 4 3 8 4 2 

P1 5 2 0 6 2 0 1 0 0 

P2 2 1 1 3 3 3 1 2 2 

 

Available 

= [ 3 2 2 ] – [ 2 0 0 ] 

= [ 1 2 2 ] 
 
 



 

 

• Now, it follows the safety algorithm to check whether this resulting state is a safe 

state or not. 

• If it is a safe state, then REQ2 can be permitted otherwise not. 

Step-01: 

• With the instances available currently, only the requirement of the process P1 can be 

satisfied. 

• So, process P1 is allocated the requested resources. 

•  It completes its execution and then free up the instances of resources held by it. 

Then- 

Available 

= [ 1 2 2 ] + [ 5 2 0 ] 

= [ 6 4 2 ] 

Step-02: 

• With the instances available currently, only the requirement of the process P2 can be 

satisfied. 

• So, process P2 is allocated the requested resources. 

•  It completes its execution and then free up the instances of resources held by it. 

Then- 

Available 

= [ 6 4 2 ] + [ 2 1 1 ] 

= [ 8 5 3 ] 

Step-03: 

With the instances available currently, the requirement of the process P0 can be satisfied. 

• So, process P0 is allocated the requested resources. 

•  It completes its execution and then free up the instances of resources held by it. 

Then- 

Available 

= [ 8 5 3 ] + [ 0 0 1 ] 

= [ 8 5 4 ] 

Thus, 

• There exists a safe sequence P1, P2, P0 in which all the processes can be executed. 

• So, the system is in a safe state. 
 



 

 
 

•  Thus, REQ2 can be permitted. 

Thus, Correct Option is (B). 

12. A system has 4 processes and 5 allocatable resource. The current allocation and 

maximum needs are as follows- 

 
Allocated Maximum 

A 1 0 2 1 1 1 1 2 1 3 

B 2 0 1 1 0 2 2 2 1 0 

C 1 1 0 1 1 2 1 3 1 1 

D 1 1 1 1 0 1 1 2 2 0 

 

If Available = [ 0 0 X 1 1 ], what is the smallest value of x for which this is a safe state? 

Solution- 

Let us calculate the additional instances of each resource type needed by each process. 

We know, 

Need = Maximum – Allocation 

So, we have- 

 

 

 

 

 

 

 

 

 

 

Case-01: For X = 0 

If X = 0, then- 

Available 

= [ 0 0 0 1 1 ] 

• With the instances available currently, the requirement of any process can not be 

satisfied. 

• So, for X = 0, system remains in a deadlock which is an unsafe state. 
 

 
 

 
Need 

A 0 1 0 0 2 

B 0 2 1 0 0 

C 1 0 3 0 0 

D 0 0 1 1 0 

 



 

 
 

Case-02: For X = 1 

If X = 1, then- 

Available 

= [ 0 0 1 1 1 ] 

Step-01: 

• With the instances available currently, only the requirement of the process D can be 

satisfied. 

• So, process D is allocated the requested resources. 

•  It completes its execution and then free up the instances of resources held by it. 

Then- 

Available 

= [ 0 0 1 1 1 ] + [ 1 1 1 1 0 ] 

= [ 1 1 2 2 1 ] 

With the instances available currently, the requirement of any process can not be satisfied. 

•  So, for X = 1, system remains in a deadlock which is an unsafe state. 

Case-02: For X = 2 

If X = 2, then- 

Available 

= [ 0 0 2 1 1 ] 

Step-01: 

• With the instances available currently, only the requirement of the process D can be 

satisfied. 

• So, process D is allocated the requested resources. 

•  It completes its execution and then free up the instances of resources held by it. 

Then- 

Available 

= [ 0 0 2 1 1 ] + [ 1 1 1 1 0 ] 

= [ 1 1 3 2 1 ] 

Step-02: 

• With the instances available currently, only the requirement of the process C can be 

satisfied. 

• So, process C is allocated the requested resources. 
 



 

 
 

•  It completes its execution and then free up the instances of resources held by it. 

Then- 

Available 

= [ 1 1 3 2 1 ] + [ 1 1 0 1 1 ] 

= [ 2 2 3 3 2 ] 

Step-03: 

With the instances available currently, the requirement of both the processes A and B can be 

satisfied. 

• So, processes A and B are allocated the requested resources one by one. 

•  They complete their execution and then free up the instances of resources held by it. 

Then- 

Available 

= [ 2 2 3 3 2 ] + [ 1 0 2 1 1 ] + [ 2 0 1 1 0 ] 

= [ 5 2 6 5 3 ] 

Thus, 

• There exists a safe sequence in which all the processes can be executed. 

• So, the system is in a safe state. 

• Thus, minimum value of X that ensures system is in safe state = 2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 

UNIT 3. MEMORY MANAGEMENT 

 INTRODUCTION 

• Memory accesses and memory management are a very important part of modern 

computer operation. Every instruction has to be fetched from memory before it can be 

executed, and most instructions involve retrieving data from memory or storing data 

in memory or both. 

• The advent of multi-tasking OS compounds the complexity of memory management, 

as processes are swapped in and out of the CPU, so must their code and data be 

swapped in and out of memory, all at high speeds and without interfering with any 

other processes. 

• Shared memory, virtual memory, the classification of memory as read-only versus 

read-write, and concepts like copy-on-write forking all further complicate the issue. 

 BASIC HARDWARE 

From the memory chips point of view, all memory accesses are equivalent. The 

memory hardware doesn't know what a particular part of memory is being used for, nor does 

it care. This is almost true of the OS as well, although not entirely. 

The CPU can only access its registers and main memory. It cannot, for example, make 

direct access to the hard drive, so any data stored there must first be transferred into the main 

memory chips before the CPU can work with it. (Device drivers communicate with their 

hardware via interrupts and "memory" accesses, sending short instructions for example to 

transfer data from the hard drive to a specified location in main memory. The disk controller 

monitors the bus for such instructions, transfers the data, and then notifies the CPU that the 

data is there with another interrupt, but the CPU never gets direct access to the disk.)  

Memory accesses to registers are very fast, generally one clock tick, and a CPU may be able 

to execute more than one machine instruction per clock tick. A memory buffer used to 

accommodate a speed differential, called a cache 

Memory accesses to main memory are comparatively slow, and may take a number of 

clock ticks to complete. This would require intolerable waiting by the CPU if it were not for 

an intermediary fast memory cache built into most modern CPUs. The basic idea of the cache 

is to transfer chunks of memory at a time from the main memory to the cache, and then to 

access individual memory locations one at a time from the cache. 

 



 

 

User processes must be restricted so that they only access memory locations that 

"belong" to that particular process. This is usually implemented using a base register and a 

limit register for each process, as shown in Figures 3.1 and 3.2 below. 

 

Figure 3.1 - A base and a limit register with a logical address space 

Every memory access made by a user process is checked against these two registers, 

and if a memory access is attempted outside the valid range, then a fatal error is generated. 

The OS obviously has access to all existing memory locations, as this is necessary to swap 

users' code and data in and out of memory. It should also be obvious that changing the 

contents of the base and limit registers is a privileged activity, allowed only to the OS kernel. 

The base register holds the smallest legal physical memory address; the limit register 

specifies the size of the range. For example, if the base register holds 300040 and the limit 

register is 120900, then the program can legally access all addresses from 300040 through 

420939. 

The base and limit registers can be loaded only by the operating system, which uses a 

special privileged instruction. Since privileged instructions can be executed only in kernel 

mode, and since only the operating system executes in kernel mode, only the operating 

system can load the base and limit registers. This scheme allows the operating system to 

change the value of the registers but prevents user programs from changing the registers 

contents. 

 



 

 

The operating system, executing in kernel mode, is given unrestricted access to both 

operating system memory and user memory. This provision allows the operating system to 

load users programs into user memory, to dump out those programs in case of errors, to 

access and modify parameters of system calls 

 
 

Figure 3.2 - Hardware address protection with base and limit registers 

 ADDRESS BINDING 

User programs typically refer to memory addresses with symbolic names such as "i", 

"count", and "average Temperature". These symbolic names must be mapped or bound to 

physical memory addresses, which typically occurs in several stages: 

• Compile Time - If it is known at compile time where a program will reside in 

physical memory, then absolute code can be generated by the compiler, containing 

actual physical addresses. However if the load address changes at some later time, 

then the program will have to be recompiled. DOS .COM programs use compile time 

binding. 

• Load Time - If the location at which a program will be loaded is not known at 

compile time, then the compiler must generate relocatable code, which references 

addresses relative to the start of the program. If that starting address changes, then the 

program must be reloaded but not recompiled. 

• Execution Time - If a program can be moved around in memory during the course of 

its execution, then binding must be delayed until execution time. This requires special 

hardware, and is the method implemented by most modern OS. 

Figure 3.3 shows the various stages of the binding processes and the units involved in each 

stages. 



 

 

 
 

Figure 3.3 - Multistep processing of a user program 

 LOGICAL VERSUS PHYSICAL ADDRESS SPACE 

An address generated by the CPU is commonly referred to as a logical address, 

whereas an address seen by the memory unit—that is, the one loaded into the memory- 

address register of the memory—is commonly referred to as a physical address. 

The compile-time and load-time address-binding methods generate identical logical and 

physical addresses. However, the execution-time address binding scheme results in differing 

logical and physical addresses. In this case, we usually refer to the logical address as a 

virtual address. The set of all logical addresses generated by a program is a logical address 

space; the set of all physical addresses corresponding to these logical addresses is a physical 

address space. Thus, in the execution-time address-binding scheme, the logical and physical 

address spaces differ. 

The address generated by the CPU is a logical address, whereas the address actually 

seen by the memory hardware is a physical address. 

Addresses bound at compile time or load time have identical logical and physical 

addresses. Addresses created at execution time, however, have different logical and physical 

addresses. 

 
 



 

 

The logical address is also known as a virtual address, and the two terms are used 

interchangeably by our text. The set of all logical addresses used by a program composes the 

logical address space, and the set of all corresponding physical addresses composes the 

physical address space. The run time mapping of logical to physical addresses is handled by 

the Memory-Management Unit, MMU. 

The MMU can take on many forms. One of the simplest is a modification of the base- 

register scheme described earlier. The base register is now termed a relocation register,  

whose value is added to every memory request at the hardware level. 

The user programs never uses physical addresses, User programs work entirely in 

logical address space, and any memory references or manipulations are done using purely 

logical addresses. Only when the address gets sent to the physical memory chips is the 

physical memory address generated. 

 

Figure 3.4 - Dynamic relocation using a relocation register 

 DYNAMIC LOADING 

The entire program and all data of a process to be in physical memory for the process 

to execute. The size of a process has thus been limited to the size of physical memory. To 

obtain better memory-space utilization, we can use dynamic loading. 

Rather than loading an entire program into memory at once, dynamic loading loads up 

each routine as it is called. The advantage is that unused routines need never be loaded, 

reducing total memory usage and generating faster program start up times. The downside is 

the added complexity and overhead of checking to see if a routine is loaded every time it is 

called and then then loading it up if it is not already loaded. 



 

 

The advantage of dynamic loading is that an unused routine is never loaded. This 

method is particularly useful when large amounts of code are needed to handle infrequently 

occurring cases, such as error routines. Although the total program size may be large, the 

portion that is used (and hence loaded) may be much smaller. 

Dynamic loading does not require special support from the operating system. It is the 

responsibility of the users to design their programs to take advantage of such a method. 

Operating systems may help the programmer, however, by providing library routines to 

implement dynamic loading. 

 DYNAMIC LINKING AND SHARED LIBRARIES 

Some operating systems support only static linking, in which system language 

libraries are treated like any other object module and are combined by the loader into the 

binary program image. Dynamic linking, in contrast, is similar to dynamic loading. Here, 

though, linking, rather than loading, is postponed until execution time. 

This feature is usually used with system libraries, such as language subroutine 

libraries. Without this facility, each program on a system must include a copy of its language 

library (or at least the routines referenced by the program) in the executable image. This 

requirement wastes both disk space and main memory. 

With dynamic linking, a stub is included in the image for each library routine 

reference. The stub is a small piece of code that indicates how to locate the appropriate 

memory-resident library routine or how to load the library if the routine is not already 

present. 

When the stub is executed, it checks to see whether the needed routine is already in 

memory. If it is not, the program loads the routine into memory. Either way, the stub replaces 

itself with the address of the routine and executes the routine. Thus, the next time that 

particular code segment is reached, the library routine is executed directly, incurring no cost 

for dynamic linking. 

Under this scheme, all processes that use a language library execute only one copy of 

the library code. This feature can be extended to library updates (such as bug fixes).A library 

may be replaced by a new version, and all programs that reference the library will 

automatically use the new version. 

Without dynamic linking, all such programs would need to be relinked to gain access 

to the new library. So that programs will not accidentally execute new, incompatible versions 



 

 

of libraries, version information is included in both the program and the library. More than 

one version of a library may be loaded into memory, and each program uses its version 

information to decide which copy of the library to use. 

Static linking library modules get fully included in executable modules, wasting both 

disk space and main memory usage, because every program that included a certain routine 

from the library would have to have their own copy of that routine linked into their 

executable code. 

With dynamic linking, however, only a stub is linked into the executable module, containing 

references to the actual library module linked in at run time. 

This method saves disk space, because the library routines do not need to be fully 

included in the executable modules, only the stubs. If the code section of the library routines 

is re-entrant, (meaning it does not modify the code while it runs, making it safe to re-enter it), 

then main memory can be saved by loading only one copy of dynamically linked routines  

into memory and sharing the code amongst all processes that are concurrently using it. (Each 

process would have their own copy of the data section of the routines, but that may be small 

relative to the code segments) that the OS must also manage shared routines in memory. 

An added benefit of dynamically linked libraries (DLLs, also known as shared 

libraries or shared objects on UNIX systems) involves easy upgrades and updates. When a 

program uses a routine from a standard library and the routine changes, then the program 

must be re-built (re-linked) in order to incorporate the changes. If DLLs are used, then as 

long as the stub doesn't change, the program can be updated merely by loading new versions 

of the DLLs onto the system. Version information is maintained in both the program and the 

DLLs, so that a program can specify a particular version of the DLL if necessary. 

The first time a program calls a DLL routine, the stub will recognize the fact and will 

replace itself with the actual routine from the DLL library. Further calls to the same routine 

will access the routine directly and not incur the overhead of the stub access. 

 SWAPPING 

• A process must be loaded into memory in order to execute. 

• If there is not enough memory available to keep all running processes in memory 

at the same time, then some processes who are not currently using the CPU may 

have their memory swapped out to a fast local disk called the backing store. 

 
 



 

 

The memory manager will start to swap out the process that just finished and to swap 

another process into the memory space that has been freed shown in Figure 3.5. 

 
 

Figure 3.5 - Swapping of two processes using a disk as a backing store 

A variant of this swapping policy is used for priority-based scheduling algorithms. If a 

higher-priority process arrives and wants service, the memory manager can swap out the 

lower-priority process and then load and execute the higher-priority process. When the 

higher-priority process finishes, the lower-priority process can be swapped back in and 

continued. This variant of swapping is sometimes called roll out, roll in. A process that is 

swapped out will be swapped back into the same memory space it occupied previously. This 

restriction is dictated by the method of address binding. If binding is done at assembly or load 

time, then the process cannot be easily moved to a different location. If execution-time 

binding is being used, however, then a process can be swapped into a different memory 

space, because the physical addresses are computed during execution time. 

Swapping requires a backing store. The backing store is commonly a fast disk. It must be 

large enough to accommodate copies of all memory images for all users, and it must provide 

direct access to these memory images. 

The system maintains a ready queue consisting of all processes whose memory 

images are on the backing store or in memory and are ready to run. Whenever the CPU 

scheduler decides to execute a process, it calls the dispatcher. The dispatcher checks to see 

whether the next process in the queue is in memory. If there is no free memory region, the 

dispatcher swaps out a process currently in memory and swaps in the desired process. It then 

reloads registers and transfers control to the selected process. 

 



 

 

The context-switch time in such a swapping system is fairly high. To get an idea of 

the context switch time, let us assume that the user process is 100 MB in size and the backing 

store is a standard hard disk with a transfer rate of 50 MB per second. The actual transfer of 

the 100 -MB process to or from main memory takes 

100 MB / 50 MB per Second = 2 Seconds. 

 STANDARD SWAPPING 

If compile-time or load-time address binding is used, then processes must be swapped 

back into the same memory location from which they were swapped out. If execution time 

binding is used, then the processes can be swapped back into any available location. 

Swapping is a very slow process compared to other operations. For example, if a user 

process occupied 10 MB and the transfer rate for the backing store were 40 MB per second, 

then it would take 1/4 second ( 250 milliseconds ) just to do the data transfer. Adding in a 

latency lag of 8 milliseconds and ignoring head seek time for the moment, and further 

recognizing that swapping involves moving old data out as well as new data in, the overall 

transfer time required for this swap is 512 milliseconds, or over half a second. For efficient 

processor scheduling the CPU time slice should be significantly longer than this lost transfer 

time. 

To reduce swapping transfer overhead, it is desired to transfer as little information as 

possible, which requires that the system know how much memory a process is using, as 

opposed to how much it might use. Programmers can help with this by freeing up dynamic 

memory that they are no longer using. 

It is important to swap processes out of memory only when they are idle, or more to 

the point, only when there are no pending I/O operations. (Otherwise the pending I/O 

operation could write into the wrong process's memory space.) The solution is to either swap 

only totally idle processes, or do I/O operations only into and out of OS buffers, which are 

then transferred to or from process's main memory as a second step. 

Most modern OSes no longer use swapping, because it is too slow and there are faster 

alternatives available. (e.g. Paging.) However some UNIX systems will still invoke swapping 

if the system gets extremely full, and then discontinue swapping when the load reduces again. 

Windows 3.1 would use a modified version of swapping that was somewhat controlled by the 

user, swapping process's out if necessary and then only swapping them back in when the user 

focused on that particular window. 



 

 

 SWAPPING ON MOBILE SYSTEMS 

Swapping is typically not supported on mobile platforms, for several reasons: 

Mobile devices typically use flash memory in place of more spacious hard drives for 

persistent storage, so there is not as much space available. 

• Flash memory can only be written to a limited number of times before it becomes 

unreliable. 

• The bandwidth to flash memory is also lower. 

• Apple's IOS asks applications to voluntarily free up memory 

• Read-only data, e.g. code, is simply removed, and reloaded later if needed. 

• Modified data, e.g. the stack, is never removed, but Apps that fail to free up sufficient 

memory can be removed by the OS 

• Android follows a similar strategy. 

• Prior to terminating a process, Android writes its application state to flash memory for 

quick restarting. 

 CONTIGUOUS MEMORY ALLOCATION 

The main memory must accommodate both the operating system and the various user 

processes. We therefore need to allocate main memory in the most efficient way possible. 

The memory is usually divided into two partitions: 

• Resident operating system 

• User processes. 

The operating system can be placed either in low memory or high memory. The major 

factor affecting this decision is the location of the interrupt vector. Since the interrupt vector 

is often in low memory, programmers usually place the operating system in low memory as 

well. 

Memory management is to load each process into a contiguous space. The operating 

system is allocated space first, usually at either low or high memory locations, and then the 

remaining available memory is allocated to processes as needed. (The OS is usually loaded 

low, because that is where the interrupt vectors are located, but on older systems part of the 

OS was loaded high to make more room in low memory (within the 640K barrier) for user 

processes.) In contiguous memory allocation, each process is contained in a single contiguous 

section of memory. 

 



 

 

 MEMORY PROTECTION 

The system shown in Figure 3.6 below allows protection against user programs 

accessing areas that they should not, allows programs to be relocated to different memory 

starting addresses as needed, and allows the memory space devoted to the OS to grow or 

shrink dynamically as needs change. 

 

Figure 3.6 - Hardware support for relocation and limit registers 

 

 

 CONTIGUOUS MEMORY ALLOCATION 

One method of allocating contiguous memory is to divide all available memory into 

equal sized partitions, and to assign each process to their own partition. This restricts both the 

number of simultaneous processes and the maximum size of each process, and is no longer 

used. 

The memory blocks available comprise a set of holes of various sizes scattered 

throughout memory. When a process arrives and needs memory, the system searches the set 

for a hole that is large enough for this process. If the hole is too large, it is split into two parts. 

One part is allocated to the arriving process; the other is returned to the set of holes. When a 

process terminates, it releases its block of memory, which is then placed back in the set of 

holes. If the new hole is adjacent to other holes, these adjacent holes are merged to form one 

larger hole. At this point, the system may need to check whether there are processes waiting 

for memory and whether this newly freed and recombined memory could satisfy the demands 

of any of these waiting processes. 

An alternate approach is to keep a list of unused (free) memory blocks (holes), and to 

find a hole of a suitable size whenever a process needs to be loaded into memory. 

 

 



 

“Fragmentation occurs in a dynamic memory allocation system when many of the free 

blocks are too small to satisfy any request”. 

 

There are many different strategies for finding the "best" allocation of memory to 

processes, the three most common memory allocations are: 

First fit - Search the list of holes until one is found that is big enough to satisfy the 

request, and assign a portion of that hole to that process. Whatever fraction of the hole not 

needed by the request is left on the free list as a smaller hole. Subsequent requests may start 

looking either from the beginning of the list or from the point at which this search ended. 

Best fit - Allocate the smallest hole that is big enough to satisfy the request. This 

saves large holes for other process requests that may need them later, but the resulting unused 

portions of holes may be too small to be of any use, and will therefore be wasted. Keeping the 

free list sorted can speed up the process of finding the right hole. 

Worst fit - Allocate the largest hole available, thereby increasing the likelihood that 

the remaining portion will be usable for satisfying future requests. 

Simulations show that either first or best fit are better than worst fit in terms of both 

time and storage utilization. First and best fits are about equal in terms of storage utilization, 

but first fit is faster. 

 FRAGMENTATION 

Fragmentation refers to the condition of a disk in which files are divided into pieces 

scattered around the disk. Fragmentation occurs naturally when you use a disk frequently, 

creating, deleting, and modifying files. At some point, the operating system needs to store 

parts of a file in non-contiguous clusters. 

All the memory allocation strategies suffer from external fragmentation, though first 

and best fits experience the problems more so than worst fit. External fragmentation means 

that the available memory is broken up into lots of little pieces, none of which is big enough 

to satisfy the next memory requirement, although the sum total could. 

The amount of memory lost to fragmentation may vary with algorithm, usage 

patterns, and some design decisions such as which end of a hole to allocate and which end to 

save on the free list. 

 

 

 
 



 

 

Statistical analysis of first fit, for example, shows that for N blocks of allocated 

memory, another 0.5 N will be lost to fragmentation. There are two types of fragmentations 

they are: 

• Internal fragmentation 

• External fragmentation 

External Fragmentation happens when a dynamic memory allocation algorithm 

allocates some memory and a small piece is left over that cannot be effectively used. If too 

much external fragmentation occurs, the amount of usable memory is drastically reduced. 

Total memory space exists to satisfy a request, but it is not contiguous. 

Internal fragmentation occurs, with all memory allocation strategies. This is caused by 

the fact that memory is allocated in blocks of a fixed size, whereas the actual memory needed 

will rarely be that exact size. For a random distribution of memory requests, on the average 

1/2 block will be wasted per memory request, because on the average the last allocated block 

will be only half full. 

Note that the same effect happens with hard drives, and that modern hardware gives 

us increasingly larger drives and memory at the expense of ever larger block sizes, which 

translates to more memory lost to internal fragmentation. 

Some systems use variable size blocks to minimize losses due to internal 

fragmentation. 

If the programs in memory are relocatable, (using execution-time address binding). 

Both the first-fit and best-fit strategies for memory allocation suffer from external 

fragmentation. The external fragmentation problem can be reduced via compaction, i.e. 

moving all processes down to one end of physical memory. This only involves updating the 

relocation register for each process, as all internal work is done using logical addresses. 

Another solution as we will see in upcoming sections is to allow processes to use non- 

contiguous blocks of physical memory, with a separate relocation register for each block. 

The goal is to shuffle the memory contents so as to place all free memory together in 

one large block. Compaction is not always possible, however. If relocation is static and is 

done at assembly or load time, compaction cannot be done; compaction is possible only if 

relocation is dynamic and is done at execution time. 

Another possible solution to the external-fragmentation problem is to permit the 

logical address space of the processes to be non-contiguous, thus allowing a process to be 



 

 

allocated physical memory wherever such memory is available. And it can be solved using 

two techniques such as 

• Paging 

• Segmentation 

Table 3.1 Comparison Chart between internal fragmentation and external 

fragmentation 

BASIS FOR 

COMPARISON 

INTERNAL 

FRAGMENTATION 

EXTERNAL 

FRAGMENTATION 

Basic It occurs when fixed sized 

memory blocks are allocated 

to the processes. 

It occurs when variable size 

memory space are allocated to 

the processes dynamically. 

Occurrence When the memory assigned to 

the process is slightly larger 

than the memory requested by 

the process this creates free 

space in the allocated block 

causing internal 

fragmentation. 

When the process is removed 

from the memory, it creates 

the free space in the memory 

causing external 

fragmentation. 

Solution The memory must be 

partitioned into variable sized 

blocks and assign the best fit 

block to the process. 

Compaction, paging and 

segmentation. 

The problem of internal fragmentation can be reduced, but it cannot be totally 

eliminated. The paging and segmentation help in utilising the space freed due to external 

fragmentation by allowing a process to occupy the memory in a non-contiguous manner. 

 COMPACTION 

The use of compaction is to minimize the probability of external fragmentation. In 

compaction, all the free partitions are made contiguous and all the loaded partitions are 

brought together. 

By applying this technique, we can store the bigger processes in the memory. The free 

partitions are merged which can now be allocated according to the needs of new processes. 

This technique is also called defragmentation. 

 



 

 

 
 

 

 

Figure 3.7 Compaction 

As shown in the Figure 3.7, the process P5, which could not be loaded into the 

memory due to the lack of contiguous space, can be loaded now in the memory since the free 

partitions are made contiguous. 

Problem with Compaction 

The efficiency of the system is decreased in the case of compaction due to the fact 

that all the free spaces will be transferred from several places to a single place. Huge amount 

of time is invested for this procedure and the CPU will remain idle for all this time. Despite 

of the fact that the compaction avoids external fragmentation, it makes system inefficient. 

TWO MARK QUESTIONS WITH ANSWERS 

1. Why page are sizes always powers of 2? 

Ans: The paging is implemented by breaking up an address into a page and offset 

number. It is most efficient to break the address into X page bits and Y offset bits, 

rather than perform arithmetic on the address to calculate the page number and offset. 

Because each bit 25 26 position represents a power of 2, splitting an address between 

bits results in a page size that is a power of 2. 

2. Consider a logical address space of eight pages of 1024 words each, mapped onto 

a physical memory of 32 frames. 

a. How many bits are there in the logical address? 

b. How many bits are there in the physical address? 
 



 

 

Ans: Each page/frame holds 1K; we will need 10 bits to uniquely address each of 

those 1024 addresses. Physical memory has 32 frames and we need 25 bits to address 

each frame, requiring in total 5+10=15 bits. A logical address space of 64 pages 

requires 6 bits to address each page uniquely, requiring 16bits in total. 

a. Logical address: 13 bits 

b. Physical address: 15 bits 

3. In the IBM/370, memory protection is provided through the use of keys. A key is 

a 4-bit quantity. Each 2K block of memory has a key (the storage key) associated 

with it? The CPU also has a key (the protection key) associated with it. A store 

operation is allowed only if both keys are equal, or if either is zero. Which of the 

following memory-management schemes could be used successfully with this 

hardware? 

 

 

 

 

 

 

 

 

 
Ans: 

• Bare machine 

• Single-user system 

• Multiprogramming with a fixed number of processes 

• Multiprogramming with a variable number of processes 

• Paging 

• Segmentation 

a) Protection not necessary set system key to 0. 

b) Set system key to 0 when in supervisor mode. 

c) Region sizes must be fixed in increments of 2k bytes, allocate key with memory 

blocks. 

d) Same as above. 

e) Frame sizes must be in increments of 2k bytes, allocate key with pages. 

f) Segment sizes must be in increments of 2k bytes, allocate key with segments 

4. What is address binding? 

Ans: The process of associating program instructions and data to physical memory 

addresses is called address binding, or relocation. 

5. Difference between internal and external fragmentation. 

Ans: Internal fragmentation is the area occupied by a process but cannot be used by 

the process. This space is unusable by the system until the process release the space. 

 



 

 

External fragmentation exists when total free memory is enough for the new process 

but it's not contiguous and can't satisfy the request. Storage is fragmented into small 

holes. 

6. Explain dynamic loading? 

Ans: To obtain better memory-space utilization dynamic loading is used. With 

dynamic loading, a routine is not loaded until it is called. All routines are kept on disk 

in a relocatable load format. The main program is loaded into memory and executed. 

If the routine needs another routine, the calling routine checks whether the routine has 

been loaded. If not, the relocatable linking loader is called to load the desired program 

into memory. 

7. Explain dynamic Linking. 

Ans: Dynamic linking is similar to dynamic loading, rather that loading being 

postponed until execution time, linking is postponed. This feature is usually used with 

system libraries, such as language subroutine libraries. A stub is included in the image 

for each library-routine reference. The stub is a small piece of code that indicates how 

to locate the appropriate memory-resident library routine, or how to load the library if 

the routine is not already present. 

8. Define swapping. 

Ans: A process needs to be in memory to be executed. However a process can be 

swapped temporarily out of memory to a backing store and then brought back into 

memory for continued execution. This process is called swapping. 

9. Define lazy swapper. 

Ans: Rather than swapping the entire process into main memory, a lazy swapper is 

used. A lazy swapper never swaps a page into memory unless that page will be 

needed. 

10. What are the common strategies to select a free hole from a set of available 

holes? 

Ans: The most common strategies are, 

• First fit 

• Worst fit 

• Best fit 

11. Define effective access time. 
 



 

 

Ans: Let p be the probability of a page fault. The value of p is expected to be close to 

0; that is, there will be only a few page faults. The effective access time is 

Effective access time = (1-p) * ma + p * page fault time. 

Where ma: memory-access time. 

12. How the problem of external fragmentation can be solved. 

Ans: Solution to external fragmentation: 

a) Compaction: shuffling the fragmented memory into one contiguous location. 

b) Virtual memory addressing by using paging and segmentation. 

13. What you mean by compaction? In which situation is it applied. 

Ans: Compaction is a process in which the free space is collected in a large memory 

chunk to make some space available for processes. In memory management, 

swapping Creates multiple fragments in the memory because of the processes moving 

in and out. Compaction refers to combining all the empty spaces together and 

processes. 

14. Define Address binding. 

Ans: Address binding is the process of mapping the program's logical or virtual 

addresses to corresponding physical or main memory addresses. In other words, a 

given logical address is mapped by the MMU (Memory Management Unit) to a 

physical address. 

15. Define External Fragmentation. 

Ans: It is a situation, when total memory available is enough to process a request but 

not in contiguous manner. 

5 MARK QUESTIONS 

1. Explain about the difference between internal fragmentation and external 

fragmentation. 

2. What are the memory management requirements? 

3. Explain difference between internal external fragmentations in detail. 

4. Free memory holes of sizes 15K, 10K, 5K, 25K, 30K, 40K are available. The 

processes of size 12K, 2K, 25K, 20K is to be allocated. How processes are placed in 

first fit, best fit, worst fit. Calculate internal as well as external fragmentation. 

5. Write short notes on swapping. 
 

 
 



 

 

10 MARK QUESTIONS 

1. Explain in detail about the concept of memory management. 

2. Explain in detail about swapping and its techniques used. 

 

 
KEY TERMS 

Base register—Register containing the lowest memory address a process may reference. 

Best-fit memory placement strategy—Memory placement strategy that places an incoming 

job in the smallest hole in memory that can hold the job. 

Boundary register—Register for single-user operating systems that was used for memory 

protection by separating user memory space from kernel memory space. 

Cache memory—Small, expensive, high-speed memory that holds copies of programs and 

data to decrease memory access times. 

Coalescing memory holes—Process of merging adjacent holes in memory in variable 

partition multiprogramming systems. This helps create the largest possible holes available for 

incoming programs and data. 

Contiguous memory allocation—Method of assigning memory such that all of the  

addresses in the process's entire address space are adjacent to one another. 

Demand fetch strategy—Method of bringing program parts or data into main memory as 

they are requested by a process 

Executive mode— protected mode in which a processor can execute operating system 

instructions on behalf of a user (also called kernel mode). 

External fragmentation—Phenomenon in variable-partition memory systems in which there 

are holes distributed throughout memory that are too small to hold a process. 

Fetch strategy—Method of determining when to obtain the next piece of program or data for 

transfer from secondary storage to main memory. 

First-fit memory placement strategy—Memory placement strategy that places an incoming 

process in the first hole that is large enough to hold it. 

Fixed-partition multiprogramming—Memory organization that divides main memory into 

a number of fixed-size partitions, each holding a single job. 

Fragmentation (of main memory)—Phenomenon wherein a system is unable to make use of 

certain areas of available main memory. 

 



 

 

Free memory list — Operating system data structure that points to available holes in 

memory. 

 

SAMPLE PROBLEMS WITH SOLUTIONS 

 

1. A computer has a single cache (off-chip) with a 2 ns hit time and a 98% hit rate.  

Main memory has a 40 ns access time. What is the computer’s effective access time? 

If we add an on-chip cache with a .5 ns hit time and a 94% hit rate, what is the 

computer’s effective access time? How much of a speedup does the on-chip cache 

give the computer? 

Answers: 

2 ns + .02 * 40 ns = 2.8 ns. 

With the on-chip cache, we have .5 ns + .06 * (2 ns + .02 * 40 ns) = .668 ns. 

The speedup is 2.8 / .668 = 4.2. 

2. Assume a computer has on-chip and off-chip caches, main memory and virtual memory. 

Assume the following hit rates and access times: on-chip cache 95%, 1 ns, off-chip cache 

99%, 10 ns, and main memory: X%, 50 ns, virtual memory: 100%, 2,500,000  ns.  Notice  

that the on-chip access time is 1 ns. We do now want our effective access time to increase 

much beyond 1 ns.  Assume that an acceptance effective access time is 1.6 ns.  What should  

X be (the percentage of page faults) to ensure that EAT is no worse than 1.6 ns? 

 
Answer: 

EAT = 1ns + .05 * (10 ns + .01 * (50 ns + (1 – X) * 2,500,000 ns)). 

Since we want EAT to be no more than 1.6 ns, 

We solve for X with 1.6 ns = 1ns + .05 * (10 ns + .01 * (50 ns + (1 – X) * 2,500,000ns)). 

X = 1 – ((((((1.25 ns – 1 ns) / .05) – 10 ns) / .01) – 50 ns) / 2,500,000). 

X = 0.99994 = 99.994%. 

Our miss rate for virtual memory must be no worse than .006%! 
 

 

 

 

 

 

 

 

 
 



 

 
 

 

 
 

 INTRODUCT

ION 

UNIT 4 - SWAPPING 

 

A process must be in memory to be executed. A process, can be swapped temporarily 

out of memory to a backing store and then brought back into memory for continued execution. 

For example, assume a multiprogramming environment with a round-robin CPU-scheduling 

algorithm. When a quantum expires, the memory manager will start to swap out the process 

that has just finished and starts to swap another process into the memory space that has been 

freed (Figure1). Meanwhile, the CPU scheduler will allocate a timeslice to other process in 

memory. When each process finishes its quantum, it will be swapped with another process. A 

variant of this swapping policy is used for priority-based scheduling algorithms. If a higher- 

priority process arrives and wants service, the memory manager can swap out the lower- 

priority process and then load and execute the higher-priority process. When the higher-priority 

process finishes, the lower-priority process can be swapped back in and continued. This variant 

of swapping is sometimes called roll out, roll in. A process that is swapped out will be 

swapped back into the same memory space it occupied previously. 

 
 

Figure 1: Swapping of two processes using a disk as a backing store 

 
The system maintains a ready queue consisting of all processes whose memory images 

are on the backing store, a fast disk that is large enough to accommodate copies of all memory 

images for all users that are ready to run. Whenever the CPU scheduler decides to execute a 

 



 

 
 

 

process, it calls the dispatcher. The dispatcher checks to see whether the next process in the 

queue is in memory. If the next process is not in memory, and if there is no free memory 

region, the dispatcher swaps out a process currently in memory and swaps in the desired 

process. It then reloads registers and transfers control to the selected process. The context- 

switch time in such a swapping system is fairly high. 

 

To get an idea of the context-switch time, let us assume that the user process is 100 MB 

in size and the backing store is a standard hard disk with a transfer rate of 50 MB per second. 

The actual transfer of the 100-MB process to or from main memory takes 100 MB/50 MB per 

second = 2 seconds. Assuming an average latency of 8 milliseconds, the swap time is 2008 

milliseconds. Since we must both swap out and swap in, the total swap time is about 4016 

milliseconds. Here, the major part of the swap time is transfer time. The total transfer time is 

directly proportional to the amount of memory swapped. 

 

Generally, swap space is allocated as a chunk of disk, separate from the file system, so 

that its use is as fast as possible. Currently, standard swapping is used in few systems. It 

requires too much swapping time and provides too little execution time to be a reasonable 

memory-management solution. 

 

 MEMORY MANAGEMENT WITH BITMAPS 
 
 

Figure 2: (a) A part of memory with five processes and three holes. The tick marks 

show the memory allocation units. The shaded regions (0 in the bitmap) are free. (b) 

The corresponding bitmap. (c) The same information as a list. 

 
 
 

 



 

 
 

 

When memory is assigned dynamically, the operating system must manage it. With a 

bitmap. The memory is divided up into allocation units, perhaps as small as a few words and 

perhaps as large as several kilobytes. According to each allocation unit, a bit in the bitmap, 

which is 0 means the unit is free and 1 it is occupied (or vice versa). Figure 2 shows part of 

memory and the corresponding bitmap. 

 
 MEMORY MANAGEMENT WITH LINKED LISTS 

 
Another way of keeping track of memory is to maintain a linked list of allocated and 

free memory segments, where a segment is either a process or a hole between two processes. In 

linked list each entry in the list specifies a hole (H) or process (P), the address at which it starts, 

the length, and a pointer to the next entry. Figure 3 gives an example, in which the segment list 

is kept sorted by address. Sorting this way has the advantage that when a process terminates or 

is swapped out, updating the list is straightforward. 

 

A terminating process normally has two neighbours (except when it is at the very top or 

very bottom of memory). These may be either processes or holes, leading to the four 

combinations shown in figure 3. When the processes and holes are kept on a list sorted by 

address, several algorithms can be used to allocate memory for a newly created process (or an 

existing process being swapped in from disk). To allocate the memory for a process the 

following algorithms can be used. 

 

Figure 3: Four neighbour combinations for the terminating process, X. 

 
First Fit: The simplest algorithm is first fit. The process manager scans along the list of 

segments until it finds a hole that is big enough to allocate the process. The hole is then broken 

 



 

 
 

 

up into two pieces, one for the process and one for the unused memory, except in the 

statistically unlikely case of an exact fit. First fit is a fast algorithm because it searches as little 

as possible. 

Next Fit: It works the same way as first fit, except that it keeps track of memory to find a 

suitable hole. The next time when it is called to find a hole, it starts searching the list from the 

place where it left the last time, instead of always at the beginning, as first fit does. 

Best Fit: Best fit searches the entire list and takes the smallest hole that is adequate. Rather 

than breaking up a big hole that might be needed later, best fit tries to find a hole that is close  

to the actual size needed. 

Worst Fit: Always take the largest available hole, so that the hole broken off will be big 

enough to be useful. Usually worst fit is not a very good idea because it takes a large amount of 

memory even for a small process. 

Quick Fit: maintains separate lists for some of the more common sizes requested. For 

example, it might have a table with n entries, in which the first entry is a pointer to the head of 

a list of 4-KB holes, the second entry is a pointer to a list of 8-KB holes, the third entry a 

pointer to 12-KB holes, and so on. Holes of say, 21 KB, could either be put on the 20-KB list 

or on a special list of odd-sized holes. With quick fit, finding a hole of the required size is 

extremely fast, it has very less disadvantage of all other algorithms that sort by hole size, to 

finds its neighbours to see if it can a merge adjacent holes. which is expensive. If merging is 

not possible memory will quickly fragment into a large number of small holes into which no 

processes fit. 

 

Both the first-fit and best-fit for memory allocation can suffer from external 

fragmentation. External fragmentation exists when there is enough total memory space to 

satisfy a request but the available spaces are not contiguous; storage is fragmented into a large 

number of small holes. This fragmentation problem can be severe. In the worst case, we could 

have a block of free (or wasted) memory between every two processes. If all these small pieces 

of memory were in one big free block instead, we might be able to run several more processes. 

Depending on the total amount of memory storage and the average process size, external 

fragmentation may be a minor or a major problem. The general approach to avoiding this 

problem is to break the physical memory into fixed-sized blocks and allocate memory in units 

based on block size. With this approach, the memory allocated to a process may be slightly 

 



 

Definition: Paging is a memory-management scheme that permits the physical address 

space of a process to be non-contiguous. Paging avoids external fragmentation and the 

need for compaction. 

 
 

 

larger than the requested memory, which leads to internal fragmentation which has unused 

memory that is internal to a partition. 

 

One solution to the problem of external fragmentation is compaction. Compaction is  

not always possible, however. If relocation is static and is done at load time, compaction  

cannot be done. Compaction is possible only if relocation is dynamic and is done at execution 

time. If addresses are relocated dynamically, relocation requires only moving the program and 

data and then changing the base register to reflect the new base address. Another possible 

solution to the external-fragmentation problem is to permit the logical address space of the 

processes to be non-contiguous, thus allowing a process to be allocated to physical memory 

wherever such memory is available. Two complementary techniques to achieve this solution: 

Paging and Segmentation, these techniques can also be combined. 

 

 PAGING 

 
Paging is a memory-management scheme that permits the physical address space of a 

process to be non-contiguous. Paging avoids external fragmentation and the need for 

compaction. It also solves the considerable problem of fitting memory chunks of varying sizes 

onto the backing store. The problem arises because, when some code fragments or  data 

residing in main memory need to be swapped out, space must be found on the backing store. 

 

 MAPPING OF PAGES TO FRAMES 

 
The basic method for implementing paging involves breaking physical memory into 

fixed-sized blocks called frames and breaking logical memory into blocks of the same size 

called pages. When a process is to be executed, its pages are loaded into any available memory 

frames from their source (a file system or the backing store). The backing store is divided into 

fixed-sized blocks that are of the same size as the memory frames. The hardware support for 

paging is illustrated in Figure 4. 

 

 



 

 
 

 

 

Figure 4: Paging hardware. 

 
 

Every address generated by the CPU is divided into two parts: a page number (p) and a 

page offset (d). The page number is used as an index into a page table. The page table contains 

the base address of each page in physical memory. This base address is combined with the  

page offset to define the physical memory address that is sent to the memory unit. Figure 5 

illustrates the paging model of memory. 
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Figure 5: Paging Model of Logical and Physical Memory 
 

 



 

 
 

 

The page size is defined by the hardware and the size of a page is typically a power of 

2, varying between 512 bytes and 16 MB per page, depending on the computer architecture. If 

the size of the logical address space is 2m and a page size is 2n addressing units (bytes or 

words), then the high-order m − n bits of a logical address designate the page number and the n 

low-order bits designate the page offset. Thus, the logical address is as follows: 

For example, consider the memory in Figure 6, where the logical address has n= 2 and m = 4. 

Using a page size of 4 bytes and a physical memory of 32 bytes (8 pages), the user’s view of 

memory can be mapped into physical memory. Logical address 0 is page 0, offset 0. Indexing 

into the page table, we find that page 0 is in frame 5. Thus, logical address 0 maps to physical 

address 20 [= (5 × 4) + 0]. Logical address 3 (page 0, offset 3) maps to physical address 23 [= 

(5 × 4) + 3]. Logical address 4 is page 1, offset 0; according to the page table, page 1 is 

mapped to frame 6. Thus, logical address 4 maps to physical address 24 [= (6 × 4) + 0]. 

Logical address 13 maps to physical address 9. Figure 6 also shows paging itself is a form of 

dynamic relocation and every logical address is bound by the paging hardware to some 

physical address. 

 

 

 

 

Figure 6: Paging example for a 32-byte memory with 4-byte pages 

 

 

 

 



 

 

When we use a paging scheme, we have no external fragmentation, whereas if process size is 

independent of page size, there internal fragmentation can be expected to average one-half  

page per process. This suggests that small page sizes are desirable. However, overhead is 

involved in each page-table entry, and this overhead is reduced as the size of the pages 

increases. So, When a process arrives in the system to be executed, its size, expressed in pages, 

is examined, since each page of the process needs one frame. Thus, if the process requires n 

pages, at least n frames must be available in memory. If n frames are available, they are 

allocated to this arriving process. The first page of the process is loaded into one of the 

allocated frames, and the frame number is put in the page table for this process. The next page 

is loaded into another frame, its frame number is put into the page table, and so on as shown in 

Figure 7. 

 

 

Figure 7: Free frames (a) before allocation and (b) after allocation. 

 
In paging user program views memory as one single space containing only one 

program. But, the user program is scattered throughout physical memory, which also holds 

other programs. The difference between the user’s view of memory and the actual physical 



 

 
 

 

memory is reconciled by the address-translation hardware. The logical addresses are translated 

into physical addresses. This mapping is hidden from the user and is controlled by the 

operating system. Since the operating system is managing physical memory, it must be aware 

of the allocation details of physical memory—which frames are allocated, which frames are 

available, how many total frames there are, and so on. This information is generally kept in a 

data structure called a frame table. The frame table has one entry for each physical page 

frame, indicating whether the latter is free or allocated and, if it is allocated, to which page of 

which process or processes. Thus, the operating system maintains a copy of the page table for 

each process, just as it maintains a copy of the instruction counter and register contents. This is 

also used by the CPU dispatcher to define the hardware page table when a process is to be 

allocated to the CPU. Paging therefore increases the context-switch time. 

 

 Hierarchical Page Table 
 

 

Figure 8: A Two-level Page-table Scheme. 
 
 
 
 



 

 
 

 

The most common techniques for structuring the page table is Hierarchical Paging. 

Most modern computer systems support a large logical address space (232 to 264). In such an 

environment, the page table itself becomes excessively large. For example, consider a system 

with a 32-bit logical address space. If the page size in such a system is 4 KB (212), then a page 

table may consist of up to 1 million entries (232/212). Assuming that each entry consists of 4 

bytes, each process may need up to 4 MB of physical address space for the page table 

alone. Clearly, we would not want to allocate the page table contiguously in main memory. 

One simple solution to this problem is to divide the page table into smaller pieces. One way is 

to use a two-level paging algorithm, in which the page table itself is also paged as Figure 8. 

 

For example, consider the system with a 32-bit logical address space and a page size of 

4 KB. A logical address divided into a page number consisting of 20 bits and a page offset 

consisting of 12 bits. Because we page the page table, the page number is further divided 

into a 10-bit page number and a 10-bit page offset. Thus, a logical address is as follows: 
 

 

where p1 is an index into the outer page table and p2 is the displacement within the page of the 

inner page table. The address-translation method for this architecture is shown in Figure 9. 

Because address translation works from the outer page table inward, this scheme is also known 

as a forward-mapped page table. 

 

 
Figure 9: Address translation for a two-level 32-bit paging architecture. 

 
 
 
 
 
 



 

 
 

 

For a system with a 64-bit logical address space, a two-level paging scheme is  no 

longer appropriate. To illustrate this point, consider the page size with 4 KB (212). In this case, 

the page table has up to 252 entries. If we use a two-level paging scheme, then the inner page 

tables can conveniently be one page long, or contain 210 4-byte entries. The addresses 

look like this: 
 

 

The outer page table consists of 242 entries, or 244 bytes. The way to avoid such a large table 

is to divide the outer page table into smaller pieces. We can divide the outer page table in 

various ways, we can page the outer page table, giving us a three-level paging  scheme. 

Suppose that the outer page table is made up of standard-size pages (210 entries, or 212 bytes), 

the 64-bit address space is still daunting: 

 
Thus he next step would be a four-level paging scheme, where the second-level outer page 

table itself is also paged, and so forth. 

 
 SEGMENTATION 

Segmentation is a memory-management scheme that supports the user view of memory. 

A logical address space is a collection of segments. Each segment has a name and a length. The 

addresses specify both the segment name and the offset within the segment. The user therefore 

specifies each address by two quantities: a segment name and an offset. This in contrast with 

the paging scheme, in which the user specifies only a single address, which is 

partitioned by the hardware into a page number and an offset, invisible to the programmer. 

For simplicity of implementation, segments are numbered and are referred to by a segment 

number, rather than by a segment name. Thus, a logical address consists of a two tuple: 

<segment-number, offset> 

Actually, the user program is compiled, and the compiler automatically constructs segments 

reflecting the input program. 

A C compiler might create separate segments for the following: 

 



 

 
 

 

1. The code 

2. Global variables 

3. The heap, from which memory is allocated 

4. The stacks used by each thread 

5. The standard C library 

Libraries that are linked in during compile time might be assigned separate segments. The 

loader would take all these segments and assign them segment numbers. 

Definition: Segmentation is a memory-management scheme that supports the user view of 

memory, where logical address space is a collection of segments. Each segment has a name 

and a leInngtshe.gTmheentaadtdiornestshees uspsecirfeyfebrosthtothoebjseecgtsmiennt 
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whereas the actual physical memory is still, as one-dimensional sequence of bytes. Thus, we 

define an implementation to map two dimensional user-defined addresses into one-dimensional 

physical addresses. This mapping is effected by a segment table. Each entry in the segment 

table has a segment base and a segment limit. The segment base contains the starting physical 

address where the segment resides in memory, and the segment limit specifies the length of the 

segment. The use of a segment table is illustrated in Figure 9. 

 

 
Figure 9: Segmentation Hardware 

 

 



 

 
 

 

A logical address consists of two parts: a segment number, s, and an offset into that 

segment, d. The segment number is used as an index to the segment table. The offset d of 

the logical address must be between 0 and the segment limit. If it is no within the limit the 

operating system concludes that the logical addressing attempts to trap beyond end of segment. 

When an offset is legal, it is added to the segment base to produce the address in physical 

memory of the desired byte. Thus the segment table is an array of base–limit register pairs. The 

Figure 10 shows five segments numbered from 0 through 4. The segments are stored in 

physical memory as shown Figure 10. The segment table has a separate entry for each segment, 

giving the beginning address of the segment in physical memory (or base) and 

the length of that segment (or limit). For example, segment 2 is 400 bytes long and begins at 

location 4300. Thus, a reference to byte 53 of segment 2 is mapped onto location 4300 + 53 = 

4353. A reference to segment 3, byte 852, is mapped to 3200 (the base of segment 3) + 852 = 

4052. A reference to byte 1222 of segment 0 would result in a trap to the operating system, as 

this segment is only 1,000 bytes long. 

 

 
Figure 10: Example of Segmentation 

 
 
 
 
 



 

Definition: Virtual memory is a technique that allows the execution of processes that are not 

completely in memory. Virtual memory also allows processes to share files easily and to 

implement shared memory. 

 
 

 

 Virtual Memory 

The instructions which must be executed must be in physical memory. The ability to 

execute a program that is only partially in memory can have many benefits: 

(i) A program will no longer need to have a constrain by the amount of physical memory that is 

available and also the users can write programs for an extremely large virtual address space, by 

simplifying the programming task. 

(ii) Because each user program could take less physical memory, more programs could be run 

at the same time, with increase in CPU utilization and throughput. But this will not increase 

response time or turnaround time. 

 

• Less I/O will be needed to load or swap user programs into memory, so that each user 

program will run faster. Thus, running a program that is not entirely in memory would benefit 

both the system and the user. 

 

 
Figure 11: Virtual Memory that is Larger than Physical Memory 

 
Virtual memory involves the separation of logical memory as perceived by users from 

physical memory. This separation allows an extremely large virtual memory to be provided for 

 
 



 

 
 

 

programmers when only a smaller physical memory is available as shown in Figure 11. Virtual 

memory makes the task of programming much easier, because the programmer no longer needs 

to worry about the amount of physical memory available; she can concentrate instead on the 

problem to be programmed. 

 

The virtual address space of a process refers to the logical (or virtual) view of how a 

process is stored in memory. This view of a process begins at a certain logical address—say, 

address 0—and exists in contiguous memory, as shown in Figure 12, where the physical 

memory is organized in page frames and the physical page frames that are assigned to a  

process may not be contiguous. In Figure 12 the heap is allowed to grow upward in memory as 

used for dynamic memory allocation. Similarly, the stack is allowed to grow downward in 

memory through successive function calls. The large blank space (or hole) between the heap 

and the stack is part of the virtual address space will require actual physical pages only if the 

heap or stack grows. Virtual address spaces that include holes are known as sparse address 

spaces. Using a sparse address space is beneficial because the holes can be filled as the stack 

or heap segments grow or if we wish to dynamically link libraries during program execution. 

 

 
Figure 12: Virtual Address Space 

In addition to separating logical memory from physical memory, virtual memory allows files 

and memory to be shared by two or more processes through page sharing. This leads to the 

following benefits: 



 

 
 

 

(i) System libraries can be shared by several processes through mapping of the shared object 

into a virtual address space. Although each process considers the shared libraries to be part of 

its virtual address space, the actual pages where the libraries reside in physical memory are 

shared by all the processes as shown in Figure 13. 

(ii) Similarly, virtual memory enables processes to share memory. Virtual memory allows one 

process to create a region of memory that it can share with another process. Processes sharing 

this region consider it as a part of their virtual address space, yet the actual physical 

pages of memory are shared, as illustrated in Figure 13. 

(iii) Virtual memory also allows pages to be shared during process creation with the fork() 

system call, thus speeding up process creation. 

 

 
 

 

Figure 13: Shared library using virtual memory. 

 
 

 DEMAND PAGING 

An executable program must be loaded from disk into memory. One option is to load 

the entire program in physical memory at program execution time. Loading the entire program 

into memory results in loading the executable code for all options, regardless of whether an 

option is ultimately selected by the user or not. An alternative strategy is to load pages only as 

they are needed. This technique is known as demand paging and is commonly used in virtual 

memory systems. 

 

With demand-paged virtual memory, pages are loaded only when they are demanded 

during program execution. Pages that are never accessed are never loaded into the physical 

memory. A demand-paging system is similar to a paging system with swapping as shown in 

 



 

 
 

 

Figure 14. When we want to execute a process, we swap it into memory. Rather than swapping 

the entire process into memory. This is known as lazy swapper. 

 

Figure 14: Transfer of a paged memory to contiguous disk space 

 
A lazy swapper never swaps a page into memory unless that page will be needed. A 

swapper is used to manipulate the entire processes, whereas a pager is concerned with the 

individual pages of a process. Thus use pager, rather than swapper, in connection with demand 

paging. When a process is to be swapped in, the pager guesses which pages will be used before 

the process is swapped out again. Instead of swapping in a whole process, the pager brings only 

those pages into memory. Thus, it avoids reading into memory pages that will not be used 

anyway, decreasing the swap time and the amount of physical memory needed. For this 

purpose, the valid–invalid bit scheme is used. When this bit is set as “valid,” the associated 

page is both legal and in memory. If the bit is set as “invalid,” the page either is not valid or is 

valid but is currently on the disk. 

 

The page-table entry for a page that is brought into memory is set as usual, but the 

page-table entry for a page that is not currently in memory is either marked invalid or contains 

the address of the page on disk. This situation is depicted in Figure 15. Thus marking a page 

invalid will have no effect if the process never attempts to access that page. Hence, only those 

pages that are actually needed, will be brought in the memory and then the process will run 

 

 



 

 
 

 

exactly as though we had brought in all pages. While the process executes and accesses pages 

that are memory resident, execution proceeds normally. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Definition: Accessing the page that is not currently in memory for execution is called as Page 

Fault. 

 
 

 

 

Figure 15: Page Table when some pages are not in main memory. 

 
If the process tries to access a page that is not in the memory, access to that page is 

marked as invalid thus causing a page fault. The paging hardware, in translating the address 

through the page table, will notice that the invalid bit is set, causing a trap to the operating 

system. This trap is the result of the operating system’s failure to bring the desired page into 

memory. 

The figure 16 shows the procedure for handling this page fault as follows, 

1. Checks an internal table usually kept with the process control block to determine whether the 

reference has a valid or an invalid memory access. 

2. If the reference is invalid, the process will be terminate. If it is valid, and the page is not yet 

brought in the memory, then the page is brought in. 



 

 
 

 

 

Figure 16: Steps in handling a page fault. 

 
3. Finds a free frame by taking one from the free-frame list. 

4. Schedules a disk operation to read the desired page into the newly allocated frame. 

5. When the disk read is complete, the internal table is modified. The process and the page 

table is modified to indicate that the page is in memory. 

6. The instruction that was interrupted by the trap is restarted. The process access the page as 

though it had always been in memory. 

 

In the extreme case, the execution of a process starts with no pages in memory. When 

the operating system sets the instruction pointer to the first instruction of the process, which is 

on a non-memory-resident page, the process immediately faults for the page. After which the 

page is brought into memory, to continue the execution. At this point, process executes with no 

more faults. This scheme is pure demand paging, which never brings a page into memory 

until it is required. 

 

 

 
 



 

 
 

 

A page fault may occur at any memory reference. If the page fault occurs on the 

instruction fetch, we can restart by fetching the instruction again. If a page fault occurs while 

we are fetching an operand, we must fetch and decode the instruction again and then fetch the 

operand. As a worst-case example, consider a three-address instruction such as ADD the 

content of A to B, placing the result in C. These are the steps to execute this instruction: 

1. Fetch and decode the instruction (ADD). 

2. Fetch A. 

3. Fetch B. 

4. Add A and B. 

5. Store the sum in C. 

If we fault when we try to store in C page not currently in memory, we will have to get 

the desired page, bring it in, correct the page table, and restart the instruction. The restart will 

fetch the instruction again, decoding it again, fetching the two operands again, and then adding 

again. However, there is not much repeated work (less than one complete instruction), and the 

repetition is necessary only when a page fault occurs. 

The major difficulty arises when one instruction may modify several different locations. 

This problem can be solved in two different ways. In one solution, the microcode computes  

and attempts to access both ends of both blocks. If a page fault is going to occur, it will happen 

at this step, before anything is modified. The move can then take place; we know that no page 

fault can occur, since all the relevant pages are in memory. The other solution uses temporary 

registers to hold the values of overwritten locations. If there is a page fault, all the old values 

are written back into memory before the trap occurs. This action restores the memory to its 

state before the instruction was started, so that the instruction can be repeated. 

 

 PERFORMANCE OF DEMAND PAGING 

Demand paging can significantly affect the performance of a computer system. To see 

why, let’s compute the Effective Access Time for a demand-paged memory. For most 

computer systems, the memory-access time, denoted ma,ranges from 10 to 200 nanoseconds. 

As long as we have no page faults, the effective access time is equal to the memory access 

time. If, a page fault occurs, we must first read the relevant page from disk and then access the 

desired word. Let p be the probability of a page fault (0 ≤ p ≤ 1). We would expect p to be close 

 

 
 



 

 
 

to zero—that is, we would expect to have only a few page faults. The Effective Access Time is 

calculated as, 

Effective Access Time = (1 − p) × ma + p × page fault time. 

 
 TRANSLATION LOOK-ASIDE BUFFER 

 
Operating system has its own methods for storing page tables and allocating a page 

table for each process. A pointer to the page table is stored with the other register values (like 

the instruction counter) in the process control block. When the dispatcher is told to start a 

process, it must reload the user registers and define the correct hardware page-table values 

from the stored user page table. The hardware implementation of the page table can be done in 

several ways. In the simplest case, the page table is implemented as a set of dedicated 

registers, with very high-speed logic to make the paging-address translation efficient. The 

CPU dispatcher reloads these registers, just as it reloads the other registers. Instructions to load 

or modify the page-table registers are, of course, privileged, so that only the operating system 

can change the memory map. The page table kept in main memory, and a Page-Table 

Base Register (PTBR) points to the page table. Changing page tables requires changing only 

this one register, substantially reducing context-switch time. 

 

The problem with this approach is the time required to access a user memory location. 

If we want to access location i, we must first index into the page table, using the value in the 

PTBR offset by the page number for i. This task requires a memory access. It provides us with 

the frame number, which is combined with the page offset to produce the actual address, to 

access the desired place in memory.With this scheme, two memory accesses are needed to 

access a byte (one for the page-table entry, one for the byte). Thus, memory access is slowed 

by a factor of 2. This delay would be intolerable under most circumstances. We might as well 

resort to swapping! The standard solution to this problem is to use a special, small, fast lookup 

hardware cache, called a Translation Look-Aside Buffer (TLB). The TLB is associative, 

high-speed memory. Each entry in the TLB consists of two parts: a key (or tag) and a value. 

When the associative memory is presented with an item, the item is compared with all keys 

simultaneously. If the item is found, the corresponding value field is returned. The search is 

fast; the hardware, however, is expensive. Typically, the number of entries in a TLB is small, 

often numbering between 64 and 1,024. 



 

 
 

 

 
 

Figure 17: Paging Hardware with TLB. 

 
The TLB is used with page tables in the following way, the TLB contains only a few of 

the page-table entries. When a logical address is generated by the CPU, its page number is 

presented to the TLB. If the page number is found, its frame number is immediately available 

and is used to access memory. The whole task may take less than 10 percent longer, if an 

unmapped memory reference were used. If the page number is not in the TLB (known as a 

TLB miss), a memory reference to the page table must be made. When the frame number is 

obtained, we can use it to access memory as shown in figure 17. In addition, we add the page 

number and frame number to the TLB, so that the next reference can be found quickly. If the 

TLB is already full of entries, the operating system must select one for replacement. 

Replacement policies range from least recently used (LRU) to random. Some TLBs store 

address-space identifiers (ASIDs) in each TLB entry. 

 

An ASID uniquely identifies each process and is used to provide address-space 

protection for that process. When the TLB attempts to resolve virtual page numbers, it ensures 

that the ASID for the currently running process matches the ASID associated with the virtual 

page. If the ASIDs do not match, the attempt is treated as a TLB miss. In addition to providing 

address-space protection, an ASID allows the TLB to contain entries for several different 

 



 

 
 

 

processes simultaneously. If the TLB does not support separate ASIDs, then every time a new 

page table is selected with each context switch, and the TLB must be flushed (or erased) to 

ensure that the next executing process does not use the wrong translation information. 

Otherwise, the TLB could include old entries that contain valid virtual addresses but have 

incorrect or invalid physical addresses left over from the previous process. The percentage of 

times that a particular page number is found in the TLB is called the hit ratio. 

 

An 80-percent hit ratio, for example, means that we find the desired page number in the 

TLB 80 percent of the time. If it takes 20 nanoseconds to search the TLB and 100 nanoseconds 

to access memory, then a mapped-memory access takes 120 nanoseconds when the page 

number is in the TLB. If we fail to find the page number in the TLB (20 nanoseconds), then we 

must first access memory for the page table and frame number (100 

nanoseconds) and then access the desired byte in memory (100 nanoseconds), for a total of 220 

nanoseconds. To find the Effective Memory-Access Time, we weight the case by its 

probability: 

Effective Access Time = 0.80 × 120 + 0.20 × 220 = 140 nanoseconds. 

In this example, we suffer a 40-percent slowdown in memory-access time. 

 

 

4. 10 INVERTED PAGE TABLES 

 
The purpose of this form of page management is to reduce the amount of physical 

memory needed to track virtual-to-physical address translations. We accomplish this savings  

by creating a table that has one entry per page of physical memory, indexed by the pair, 

<process-id, page-number> 

the information about which virtual memory page is stored in each physical frame, reduces the 

amount of physical memory needed to store the information in the inverted page tables. Also, 

the inverted page table no longer contains complete information about the logical address space 

of a process, and the information required if a referenced page is not currently in memory. 

Demand paging requires this information to process page faults. For the information to be 

available, an external page table (one per process) must be maintained. Each such table looks 

like the traditional per-process page table and contains information on where each virtual page 

is located. Since these tables are referenced only when a page fault occurs, they do not need to 

 



 

 
 

 

be available quickly. Instead, they are themselves paged in and out of memory as necessary. 

Unfortunately, a page fault may now cause the virtual memory 

manager to generate another page fault as it pages is in the external page table and it needs to 

locate the virtual page on the backing store. This special case requires careful handling in the 

kernel and a delay in the page-lookup processing. 

 

 PAGE REPLACEMENT 

 
Page replacement takes the following approach. If no frame is free, we find one that is 

not currently being used and free it. We can free a frame by writing its contents to swap space 

and changing the page table and all other tables to indicate that the page is no longer in 

memory Figure 18. 

Figure 18: Page replacement. 

We can now use the freed frame to hold the page for which the process faulted. We modify the 

page-fault service routine to include page replacement: 

1. Find the location of the desired page on the disk. 

2. Find a free frame: 

a. If there is a free frame, use it. 

 



 

 
 

 

b. If there is no free frame, use a page-replacement algorithm to select a victim frame. 

c. Write the victim frame to the disk; change the page and frame tables accordingly. 

3. Read the desired page into the newly freed frame; change the page and 

frame tables. 

4. Restart the user process. 

Also, if no frames are free, two page transfers (one out and one in) are required. This situation 

effectively doubles the page-fault service time and increases the effective access time 

accordingly. This overhead can be reduced by using a modify bit (or dirty bit). The modify bit 

for a page is set by the hardware whenever any word or byte in the page has been modified. 

When we select a page for replacement, we examine its modify bit. If the bit is set, it means 

that the page has been modified since it was read in from the disk. In this case, we must write 

the page to the disk. If the modify bit is not set, however, the page has not been modified since 

it was read into memory. In this case, we need not write the memory page to the disk: it is 

already there. This technique also applies to read-only pages and such pages cannot be 

modified; they may be discarded when desired. This scheme can significantly reduce the time 

required to service a page fault, since it reduces I/O time by one-half if the page has not been 

modified. 

Page replacement is basic to demand paging. It completes the separation between 

logical memory and physical memory. If a page that has been modified and it is to be replaced, 

its contents are copied to the disk, after replacement the reference to that page will cause a page 

fault. At that time, the page will be brought back into memory, perhaps replacing some other 

page in the process. perhaps replacing some other page in the process. 

To solve this two major problems to implement demand paging, we must develop a frame- 

allocation algorithm and a page-replacement algorithm. That is, if we have multiple 

processes in memory, we must decide how many frames to allocate to each process; when page 

replacement is required, and also select the frames that are to be replaced. There are many 

different page-replacement algorithms. Every operating system probably has its own 

replacement scheme. 

In general, if we want to replace a page, we must select the one with the lowest page- 

fault rate. We evaluate an algorithm by running it on a particular string of memory references 

and computing the number of page faults. The string of memory references is called a 

 



 

 
 

 

reference string. Several page-replacement algorithms are illustrated with the following 

reference string 

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 

for a memory with three frames. 

 
 FIFO PAGE REPLACEMENT 

The simplest page-replacement algorithm is a First-In, First-Out (FIFO) algorithm. A 

FIFO replacement algorithm associates with each page the time when that page was brought 

into memory. When a page must be replaced, the oldest page is chosen. We replace the page at 

the head of the queue. When a page is brought into memory, we insert it at the tail of the  

queue. For our example reference string, our three frames are initially empty. The first three 

references (7, 0, 1) cause page faults and are brought into these empty frames. The next 

reference (2) replaces page 7, because page 7 was brought in first. Since 0 is the next reference 

and 0 is already in memory, we have no fault for this reference. The first reference to 3 results 

in replacement of page 0, since it is now first in line. Because of this replacement, the next 

reference, to 0, will fault. Page 1 is then replaced by page 0. This process continues as shown  

in Figure 19. Every time a fault occurs, we show which pages are in our three 

frames. There are fifteen faults altogether. 
 

 
Figure 19: FIFO page-replacement algorithm 

The FIFO page-replacement algorithm is easy to understand and program. However, its 

performance is not always good. If we select for replacement a page that is in active use, 

everything still works correctly. After we replace an active page with a new one, a fault occurs 

almost immediately to retrieve the active page. Thus, a bad replacement choice increases the 

page-fault rate and slows process execution. To illustrate the problems that are possible with a 

FIFO page-replacement algorithm, we consider the following reference string: 

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 

 



 

 
 

 

which results as Figure 20, with the number of faults for four frames as ten that is greater than 

the number of faults for three frames which is nine. This unexpected result is known as 

Belady’s anomaly. (i.e) the page-fault rate may increase as the number of allocated frames 

increases. 

 

 

Figure 20: Page-fault curve for FIFO replacement on a reference string 

 
 OPTIMAL PAGE REPLACEMENT 

 
An optimal page-replacement algorithm, which has the lowest page-fault rate of all 

algorithms and will never suffer from Belady’s anomaly. This algorithm is called as OPT or 

MIN. The policy of Optimal Page Replacement is. 

Replace the page that will not be used 

for the longest period of time. 

Use of this page-replacement algorithm guarantees the lowest possible page fault rate for a 

fixed number of frames. For example, on our sample reference string, the optimal page- 

replacement algorithm would yield nine page faults, as shown in Figure 21. The first three 

references cause faults that fill the three empty frames. The reference to page 2 replaces page 7, 

because page 7 will not be used until reference 18, whereas page 0 will be used at 5, and page 1 

at 14. The reference to page 3 replaces page 1, as page 1 will be the last of the three pages in 

 



 

 
 

 

memory to be referenced again. With only nine page faults, optimal replacement is much better 

than a FIFO algorithm, which results in fifteen faults. Unfortunately, the optimal page- 

replacement algorithm is difficult to implement, because it requires future knowledge of the 

reference string. 

 
Figure 21: Optimal Page-Replacement Algorithm 

 
 LRU PAGE REPLACEMENT 

 
If the optimal algorithm is not feasible, an approximation of the optimal algorithm is 

possible. The difference between the FIFO and OPT algorithms is that the FIFO algorithm uses 

the time when a page was brought into memory, whereas the OPT algorithm uses the time 

when a page is to be used. If we use the recent past as an approximation of the near future, then 

we can replace the page that has not been used for the longest period of time. This approach is 

the least-recently-used (LRU) algorithm. LRU replacement associates with each page the 

time of that page’s last use. When a page must be replaced, LRU chooses the page that has not 

been used for the longest period of time. The result of applying LRU replacement to our 

example reference string is shown in Figure 22. 

 
Figure 22: LRU page-replacement algorithm 

 
 
 
 



 

 
 

 

The LRU algorithm produces twelve page faults. The first five faults are the same as those for 

optimal replacement. When the reference to page 4 occurs, the LRU replacement sees that, out 

of the three frames in memory, page 2 was used least recently. Thus, the LRU algorithm 

replaces page 2, without knowing that page 2 is about to be used. When faults for page 2 

occurs the LRU algorithm replaces page 3, since it is now the least recently used of the three 

pages in memory. 

Despite these problems, LRU replacement with twelve faults is much better than FIFO 

replacement with fifteen page fault. The LRU policy is often used as a page-replacement 

algorithm and is considered to be good. The major problem is how to implement LRU 

replacement. An LRU page-replacement algorithm may require hardware assistance. Two 

implementations are feasible for LRU page-replacement: 

(i) COUNTERS: We associate with each page-table entry a time-of-use field and add to the 

CPU a logical clock or counter. The clock is incremented for every memory reference. 

Whenever a reference to a page is made, the contents of the clock register are copied to the 

time-of-use field in the page-table entry for that page. We replace the page with the smallest 

time value. This scheme requires a search of the page table to find the LRU page and a write to 

memory the time-of-use field in the page table for each memory access. The times must also be 

maintained when page tables are changed due to CPU scheduling. Here, overflow of the clock 

must be considered. 

 
Figure 22: Use of a stack to record the most recent page references 

 



 

 
 

 

(ii) STACK: Another approach to implementing LRU replacement is to keep a stack of page 

numbers. Whenever a page is referenced, it is removed from the stack and put on the top. In 

this way, the most recently used page is always at the top of the stack and the least recently 

used page is always at the bottom as shown in Figure 22. Because entries must be removed 

from the middle of the stack, it is best to implement this approach by using a doubly linked list 

with a head pointer and a tail pointer. Removing a page and putting it on the top of the stack 

then requires changing six pointers at worst, more expensive, but there is no search for a 

replacement; the tail pointer points to the bottom of the stack, which is the LRU page. This 

approach is particularly appropriate for software or microcode implementations of LRU 

replacement. Like optimal replacement, LRU replacement does not suffer from Belady’s 

anomaly. Both belong to a class of page-replacement algorithms, called stack algorithms, that 

can never exhibit Belady’s anomaly. 

 

 LRU-APPROXIMATION PAGE REPLACEMENT 

 
The basis for many page-replacement algorithms that approximate LRU replacement is to 

execute a user process where, the bit associated with each page referenced is set (to 1) by the 

hardware. After some time, we can determine which pages have been used and which have not 

been used by examining the reference bits, although we do not know the order of use. 

 

 ADDITIONAL-REFERENCE-BITS ALGORITHM 

 
The additional ordering information by recording the reference bits at regular intervals 

can maintain an 8-bit byte for each page in a table in memory. At regular intervals the 

operating system shifts the reference bit for each page into the high-order bit of its 8-bit byte, 

shifting the other bits right by 1 bit and discarding the low-order bit. These 8-bit shift registers 

contain the history of page use for the last eight time periods. If the shift register contains 

00000000, then the page has not been used for eight time periods. And a page that is used at 

least once in each period will have a shift register value of 11111111. If we interpret these 8-bit 

bytes as unsigned integers, the page with the lowest number is the LRU page can be replaced. 

We can replace by swapping out all pages with the smallest value by using FIFO method to 

choose among them. In the extreme case, the number can be reduced to zero, leaving only the 

reference bit itself. This algorithm is called the second-chance page-replacement algorithm. 

 
 



 

 
 

 

 SECOND-CHANCE ALGORITHM 

 
The basic algorithm of second-chance replacement is a FIFO replacement algorithm. 

When a page has been selected, however, we inspect its reference bit. If the value is 0, we 

proceed to replace this page; but if the reference bit is set to 1, we give the page a second 

chance and move on to select the next FIFO page. When a page gets a second chance, its 

reference bit is cleared, and its arrival time is reset to the current time. Thus, a page that is 

given a second chance will not be replaced until all other pages have been replaced or given a 

second chances. One way to implement the second-chance algorithm is to have a reference to 

the clock algorithm as a circular queue. A pointer that is on the clock will indicate which page 

is to be replaced next. When a frame is needed, the pointer advances until it finds a page with a 

0 reference bit. As it advances, it clears the reference bits as in Figure 23. Once a victim page is 

found, the page is replaced, and the new page is inserted in the circular queue in that 

 
 

 

Figure 23: Second-Chance (Clock) Page-Replacement Algorithm 
 
 
 
 
 
 



 

 
 

 

position. The worst case is when all bits are set in the pointer cycles, the whole queue gives 

each page a second chance. It clears all the reference bits before selecting the next page for 

replacement. Second-chance replacement degenerates to FIFO replacement if all bits are set. 

 

 ENHANCED SECOND-CHANCE ALGORITHM 

 
Enhanced second-chance algorithm considers the reference bit and the modify bit in an 

ordered pair. With these two bits, we have the following four possible classes: 

1. (0, 0) neither recently used nor modified, it is best page to replace. 

2. (0, 1) not recently used but modified, it is not good to replace because the page is 

needed to be written out before replacement. 

3. (1, 0) recently used but clean, it can probably be used again soon. 

4. (1, 1) recently used and modified, it will probably be used again soon, and the page will 

be need to be written out to disk before it can be replaced. 

Each page is in one of these four classes. When page replacement is called, the same scheme as 

in the clock algorithm; will examine whether the page to which we are pointing has the 

reference bit set to 1 and scan the circular queue several times before we find a page to be 

replaced. The major difference between this algorithm and the simpler clock algorithm is that 

here we give preference to those pages that have been modified to reduce the number of I/Os 

required. 

 

 COUNTING-BASED PAGE REPLACEMENT 

 
There are many other algorithms that can be used for page replacement. For example, 

we can keep a counter of the number of references that have been made to each page and 

develop the following two schemes. 

(i) The Least-Frequently-Used (LFU) page-replacement algorithm requires that the page 

with the smallest count be replaced. The reason for this selection is that an actively used page 

should have a large reference count. A problem arises, however, when a page is used heavily 

during the initial phase of a process but then is never used again. Since it was used heavily, 

it has a large count and remains in memory even though it is no longer needed. One solution is 

to shift the counts right by 1 bit at regular intervals, forming an exponentially decaying average 

usage count. 

 
 



 

 
 

 

(ii) The Most-Frequently-Used (MFU) page-replacement algorithm is based on the 

argument that the page with the smallest count is just brought in and has yet to be used. As you 

expect, neither MFU nor LFU replacement is common. The implementation of these  

algorithms is expensive, and they do not approximate OPT replacement well. 

 

 

 
 

2 Marks: 

Questions and Answers: 

 

1. Differentiate internal and external fragmentation. 

Internal fragmentation: Memory that is internal to a partition but not being used 

External fragmentation: Total memory space exists to satisfy a request, but it is not 

contiguous. 

 

2. What is meant by Paging? Give its advantages. 

Paging is a Memory-management scheme that permits the physical -address space of a 

process to be Non-contiguous. 

Advantages: (i) Avoids the considerable problem of fitting the varying-sized memory 

chunks onto the backing store. (ii) Fragmentation problems are also prevalent backing 

store, except that access is much slower, so compaction is impossible. 

 
3. What is meant by Locality of reference? 

During any phase of execution, the page references only a relative small fraction of its 

pages. This reference of fraction of all pages is called as Locality of Reference. 

 

4. Differentiate Segmentation and Paging storage. 
 

S. No. Segmentation Paging 

1. The physical memory is breaking 

into variable-sized blocks called 

segments. 

The physical memory is breaking into 

fixed-sized blocks called frames and 

logical memory is breaking into blocks 

of the same size called pages. 

2. Address generated by CPU is 

divided  into  segment  number  (S) 

Address generated by CPU is divided as 

Page number (p) and Page offset (d). 

 



 

 
 

 

 and segment offset (d).  

3. Physical address = segment base + 

offset 

Physical address = page size * frame 

number + offset 

4. Has external fragmentation No external fragmentation 

 

5. What is meant by Page Fault? 

Whenever memory management unit accessing the page that are not in the memory is 

called as Page Fault. 

 

6. What is meant by Swapping? 

It is a process of bringing in each process in its entirety, running it for a while, then 

putting it back on the disk. 

 
7. What is meant by Memory Compaction? 

When swapping creates multiple holes in memory, it is possible to combine them all 

into one big by moving all the processes downward as far as possible. 

 
8. What is demand paging? 

Swapping a page into the memory, when we want to execute a process. Also called as 

Lazy swapper because the page is brought into the memory on demand 

 

9. Define the virtual memory? What are its advantages? 

Virtual memory is a technique that allows the execution of processes that are not 

completely in memory. 

Advantages: 

• Enables users to run programs that are larger than actual physical memory. 

• VM makes the task of programming much easier. 

• Virtual memory allows processes to share files easily and to implement shared 

memory. 

• It provides an efficient mechanism for process creation. 
 

 

 

 

 
 



 

 
 

 

10. How can measure the performance of demand paging? 

To measure the demand paging , the effective access time for a demand –paged 

memory is calculated by: 

Effective access time = (1 – p) x ma + p x page fault time 

Where, p: The probability of page fault, 0 < p < 1; 

ma: Memory access time , ranges from 10 to 200 nanosecond. 

 
11. How can the system distinguish between the pages that are in main memory from the 

pages that are on the disk? 

The system uses valid-invalid bit is used. This bit is set to "valid" when the page in 

memory, while it set to "invalid" when the page either not valid or is the page is valid 

but is on the disk, as in the following figure. 

 

 

12. What are the differences between pager and swapper? 
 

S. No. Pager Swapper 

1. Pager Swaps a page into memory 

when this page will be needed 

into memory. 

Swapper swaps the entire processes 

into memory 

2. It use in demand-paging system It uses in paging system 

 

 

 

 

 

 



 

 
 

 

Answer in detail 

1. Discuss in detail paging. 

Hints: Paging definition, Basic method-page, frame, page table, page offset and page 

number, Paging hardware diagram, TLB with diagram, Protection bits and valid/invalid 

bits. 

 

2. Bring out a detailed study on Segmentation. 

Hints: User view of program; Segmentation definition; Hardware - with diagram; 

Protection and sharing with diagram; Fragmentation 

 

3. Discuss in brief about Demand paging. 

Hints: Definition: Lazy Swapper, Explanation : Page Fault, Page Fault Trap, Example, 

Effective Access Time 

 
4. What are the steps to modify the page-fault service routine to include page 

replacement? 

Step 1. Find the location of the desired page on the disk. 

Step 2. Find a free frame: 

a) If there is a free frame, use it. 

b) If there are no free frames, use a page-replacement algorithm to select a 

victim frame. 

c) Write the victim frame to the disk, change the pages table. 

Step 3. Read the desired page and store it in the free frame. Adjust the page table. 

Step 4. Restart the user process. 

5. Explain in detail the various page replacement strategies. 

Hints: Page replacement basic scheme with diagram; FIFO page replacement; optimal 

page replacement; LRU page replacement; LRU approximation page replacement; 

Counting-based page replacement; Page buffering algorithm. 

 

 

 

 

 



 

 
 

 

PROBLEMS: 

1. Calculate the size of memory if its address consists of 22 bits and the memory is 2-byte 

addressable. 

Solution: 

Given, 

• Number of locations possible with 22 bits = 222 locations 

• It is given that the size of one location = 2 bytes 

Formula: Size of memory = 2n x Size of one location. 

Thus, Size of memory = 222 x 2 bytes= 223 bytes = 8 MB 

2. Suppose that we have free segments with sizes: 6, 17, 25, 14, and 19. Place a program with 

size 13KB in the free segment using first-fit, best-fit and worst fit? 

 

Solution: 

 

 

 
2. Consider a system with byte-addressable memory, 32 bit logical addresses, 4 kilobyte page 

size and page table entries of 4 bytes each. The size of the page table in the system in 

megabytes is . 

Solution: 
 

Formula: 
 

(i) Size of page table = Number of entries in page table x Page table entry size 

(ii) Number of entries in pages table = Number of pages the process is divided 
 



 

 
 

 

(iii) Page table entry size = Number of bits in frame number + Number of bits used for 

optional fields, if any 

Given , 

- Number of bits in logical address = 32 bits 

- Page size = 4KB 

- Page table entry size = 4 bytes 
 

Process Size: 

Number of bits in logical address = 32 bits 

Thus, Process size = 232 B = 4 GB 

Number of Entries in Page Table: 

Number of pages the process is divided = Process size / Page size = 4 GB / 4 KB = 220 pages 

Thus, Number of entries in page table = 220 entries 

Page Table Size: 

Page table size = Number of entries in page table x Page table entry size 

= 220 x 4 bytes = 4 MB 

 
 

3. Assume an average page-fault service time is 25 milliseconds and a memory access time is 

100 nanoseconds. Find the Effective Access Time? 

Effective Access Time (EAT)= (1 – p) x (ma) + p x (page fault time) 

= (1 – p) x 100 + p x 25,000,000 

= 100 – 100 x p + 25,000,000 x p 

 
 

4. Consider a program consists of 5 segments: S0 = 600, S1 = 14 KB, S2= 100 KB, S3 =580 

KB, and S4 = 96 KB. Assume at that time, the available free space partitions of memory are 

1200–1805, 50 – 150, 220-234, and 2500-3180. 

Find the following: 

a. Allocate space for each segment in memory? 

b. Calculate the external fragmentation and the internal fragmentation? 

c. What are the addresses in physical memory for the following logical addresses: 

(i) 0.580, (ii) 1.17 (iii) 2.66 (d) 3.82 (iv) 4.20? 

 

 



 

 
 

 

Solution for a: 
 

 
Solution for b: 

External Fragmentation =0. 

Internal Fragmentation = (160-150) +(1805-1800) + (3180-3176) 

= 10 + 5 + 4 = 19 

Fragmentation = External Fragmentation + Internal Fragmentation = 0 + 19 = 19 

Solution for c: 

The physical addresses are 

(i) 0.580 ------ the physical address of 0.580 = 1200+580 = 1780. 

(ii) 1.17 ----- Since d > limit of S1, the address is wrong. 

(iii) 2.66 ----- the physical address of 2.66= 50 + 66 = 116 

(iv) 3.82 ----- the physical address is of 3.82 is = 2500 + 82 = 2582 

(v) 4.20 ----- the physical address 4.20 = 3080+20 = 3100 

 

5. Consider the following page reference using three frames that are initially empty. Find the 

page faults using FIFO algorithm, where the page reference sequence: 7,0,1, 

2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1? 

 



 

 
 

 

Solution: 
 

The page fault = 15. 

6. Let the page fault service time be 10 ms in a computer with average memory access time 

being 20 ns. If one page fault is generated for every 106 memory accesses, what is the 

Effective Access Time for the memory? 

Solutions: 

Given- 

• Page fault service time = 10 ms 

• Average memory access time = 20 ns 

• One page fault occurs for every 106 memory accesses 

Page Fault Rate: 

- It is given that one page fault occurs for every 106 memory accesses. 

Thus, Page fault rate = 1 / 106 = 10-6 

Effective Access Time (EAT) with Page Fault: 

It is given that effective memory access time without page fault = 20 ns. 

Now, substituting values in the above formula, 

we get, 

EAT with page fault = 10-6 x { 20 ns + 10 ms } + ( 1 – 10-6 ) x { 20 ns } 

= 10-6 x 10 ms + 20 ns 

= 10-5 ms + 20 ns 

= 10 ns + 20 ns 

= 30 ns 
 

 

 
 



 

 
 

 

7. Consider a system with a two-level paging scheme in which a regular memory access takes 

150 nanoseconds and servicing a page fault takes 8 milliseconds. An average instruction 

takes 100 nanoseconds of CPU time and two memory accesses. The TLB hit ratio is 90% 

and the page fault rate is one in every 10,000 instructions. What is the effective average 

instruction execution time? 

Solutions: 

Given, 

- Number of levels of page table = 2 

- Main memory access time = 150 ns 

- Page fault service time = 8 msec 

- Average instruction takes 100 ns of CPU time and 2 memory accesses 

- TLB Hit ratio = 90% = 0.9 

- Page fault rate = 1 / 104 = 10-4 

Assume TLB access time = 0 since it is not given in the question. 

Also, TLB access time is much less as compared to the memory access time. 

Effective Access Time without Page Fault: 

 
Substituting values in the above formula, we get 

Effective memory access time without page fault 

= 0.9 x { 0 + 150 ns } + 0.1 x { 0 + (2+1) x 150 ns } 

= { 0.9 x 150 ns } + { 0.1 x 450 ns } 

= 135 ns + 45 ns 

= 180 ns 

Effective Access Time with Page Fault: 

Substituting values in the above formula, we get- 

Effective access time with page fault 

= 10-4 x { 180 ns + 8 msec } + (1 – 10-4) x 180 ns 

= 8 x 10-4 msec + 180 ns 

= 8 x 10-7 sec + 180 ns 

= 800 ns + 180 ns 
 



 

 
 

 

= 980 ns 

Effective Average Instruction Execution Time: 

Effective Average Instruction Execution Time 

= 100 ns + 2 x Effective memory access time with page fault 

= 100 ns + 2 x 980 ns 

= 100 ns + 1960 ns 

= 2060 ns 

 
8. A demand paging system takes 100 time units to service a page fault and 300 time units to 

replace a dirty page. Memory access time is 1 time unit. The probability of a page fault is p. 

In case of a page fault, the probability of page being dirty is also p. If, it is observed that the 

average access time is 3 time units. What is the value of p? 

Solution: 

Given, 

- Page fault service time = 100 time units 

- Time taken to replace dirty page = 300 time units 

- Average memory access time = 1 time unit 

- Page fault rate = p 

- Probability of page being dirty = p 

- Effective access time = 3 time units 

Now, According to question, 

3 time units = p x { 1 time unit + p x { 300 time units } + (1 – p) x { 100 time 

units } } + (1 – p) x { 1 time unit } 

3 = p x { 1 + 300p + 100 – 100p } + (1 – p) 

3 = p x { 101 + 200p } + (1 – p) 

3 = 101p + 200p2 + 1 – p 

3 = 100p + 200p2 + 1 

200p2 + 100p – 2 = 0 

On solving this quadratic equation, we get p = 0.019258 
 

 

 

 

 

 


