SYLLABUS

Objective: Enable the student to get sufficient knowledge on various system resources.

Unit — | Operating System Basics

Basic Concepts of Operating System - Services of Operating System-Classification of
Operating System- Architecture and Design of an Operating System-Process Management -
Introduction to Process-Process State -PCB - Process Scheduling - Interprocess
Communication

Unit —11 Operating System Scheduling

CPU Scheduling: Introduction - Types of CPU Scheduler - Scheduling Criteria - Scheduling
Algorithms - FCFS Scheduling — SJF Scheduling;-Priority Scheduling - Round-Robin
Scheduling- Multilevel Queue Scheduling - Deadlock - Basic Concept of Deadlock-
Deadlock Prevention - Deadlock Avoidance- Deadlock - Detection and Recovery

Unit- 11l Memory management

Memory Management - Basic Concept of Memory - Address Binding; Logical and Physical
Address Space- Memory Partitioning - Memory Allocation-Protection-Fragmentation and
Compaction

Unit — IV Swapping

Swapping- Using Bitmaps - Using Linked Lists- Paging-Mapping of Pages to Frames -
Hierarchical Page Tables- Segmentation - Virtual Memory - Basic Concept of Virtual
Memory- Demand Paging - Transaction Look aside Buffer (TLB) - Inverted Page Table-Page
Replacement Algorithms

Unit -V File Management
File Management - Basic Concept of File-Directory Structure-File Protection-Allocation
Methods — Various Disk Scheduling algorithms

Text Books:
1. Abraham Silberschatz Peter B. Galvin, G. Gagne, “Operating System Concepts”,
Sixth Edition, Addison Wesley Publishing Co., 2003.

Reference Books:

1. Operating systems - Internals and Design Principles, W. Stallings, 6th Edition,
Pearson

2. Operating System - Willam-Stallings Fourth Edition, Pearson Education, 2003.

3. Modern Operating Systems — Andrew S. Tanenbaum, 3 rd Edition, PHI 3.

4. Operating Systems: A Spiral Approach — Elmasri, Carrick, Levine, TMH Edition

5. Operating Systems — Flynn, McHoes, Cengage Learning

6. Operating Systems — Pabitra Pal Choudhury, PHI

7. Operating Systems — H.M. Deitel, P. J. Deitel, D. R. Choffnes, 3 rd Edition, Pearson

8. Operating Systems: Three Easy Pieces - Andrea C. Arpaci-Dusseau and Remzi H.
Arpaci-Dusseau

9. Understanding operating systems - Ida Flynn

10. Operating Systems: A Modern Perspective - Gary J Nutt

11. Operating Systems: Design and Implementation - Albert S. Woodhull and Andrew S.
Tanenbaum

UNIT 1. OPERATING SYSTEM BASICS
INTRODUCTION

DEFINITION
“An operating system is a program that manages a computer’s hardware. It also
provides a basis for application programs and acts as an intermediary between the

computer user and the computer hardware”.

The purpose of an operating system is to provide an environment in which a user can
execute programs in a convenient and efficient manner. An operating system is large and
complex, it must be created piece by piece. Each of these pieces should be a well-delineated
portion of the system, with carefully defined inputs, outputs, and functions. An operating
system is software that manages the computer hardware. The hardware must provide
appropriate mechanisms to ensure the correct operation of the computer system and to

prevent user programs from interfering with the proper operation of the system.
WORKING OF OPERATING SYSTEM

A computer system can be divided into four components with hardware, the operating

system, the application programs, and the users as shown in figure 1.1,

user user user user
1 2 3 T n
EN ~ -~
v
compiler assembler text editor e database
system

system and application programs

operating system

computer hardware

Figure 1.1 - Abstract View of the Components of a Computer System

The hardware Central Processing Unit (CPU), the Memory, and the Input / Output

(1/O) devices provides the basic computing resources for the system. The Application

Programs such as word processors, spreadsheets, compilers, and Web browsers define the
ways in which these resources are used to solve users’ computing problems. A computer
system as consisting of hardware, software, and data. The operating system provides the

means for proper use of these resources in the operation of the computer system.
COMPUTER SYSTEM ORGANIZATION

A modern general-purpose computer system consists of one or more CPUs and a
number of device controllers connected through a common bus that provides access to shared
memory Figure 1.2. Each device controller is in charge of a specific type of device (for
example, disk drives, audio devices, or video displays). The CPU and the device controllers
can execute in parallel, competing for memory cycles. To ensure orderly access to the shared
memory, a memory controller synchronizes access to the memory.

mouse keyboard printer monitor
dusks |

oo ¢ @& &=,

N1/]

disk graphics
I CPU | contiolior USB controller adapter

L [|

memory ’

Figure 1.2 - A Modern Computer System

When the system is powered up or rebooted it needs to have an initial program to run.
This initial program, or bootstrap program, tends to be simple. Typically, it is stored within
the computer hardware in read-only memory (ROM) or electrically erasable programmable
read-only memory (EEPROM), known by the general term firmware. It initializes all
aspects of the system, from CPU registers to device controllers to memory contents. The
bootstrap program must know how to load the operating system and how to start executing
that system.
The bootstrap program must locate the operating-system kernel and load it into memory.

Once the kernel is loaded and executing, it can start providing services to the system and its

users. Some services are provided outside of the kernel, by system programs that are loaded
into memory at boot time to become system processes, or system daemons that run the

entire time the kernel is running.

/ A Kernel is a central component of an operating system. It acts as an interface \
between the user applications and the hardware.

Booting is a start-up sequence that starts the operating system of a computer when it is
turned on.

A Bootstrap is the program that initializes the Operating System (OS) during start-up

\which initiates the smaller program that executed a larger program such as the OS. j

The occurrence of an event is usually signalled by an interrupt from either the
hardware or the software. Hardware may trigger an interrupt at any time by sending a signal
to the CPU, usually by way of the system bus. Software may trigger an interrupt by executing
a special operation called a system call (also called a monitor call). When the CPU is
interrupted, it stops what it is doing and immediately transfers execution to a fixed location.
The fixed location usually contains the starting address where the service routine for the
interrupt is located. The interrupt service routine executes; on completion, the CPU resumes

the interrupted computation.

/Interrupt is a signal that gets the attention of the CPU and is usually generated When\
1/O is required”.
A System Call is the programmatic way in which a computer program requests a

service from the kernel of the operating system it is executed on. It provides an

\interface between a process and operating system to allow user-level processes to /

STORAGE STRUCTURES, DEFINITIONS AND NOTATIONS
All forms of memory provide an array of bytes. Each byte has its own address.
Interaction is achieved through a sequence of load or store instructions to specific memory
addresses. The load instruction moves a byte or word from main memory to an internal
register within the CPU, whereas the store instruction moves the content of a register to main
memory.

Bit — basic unit 1 or 0

Byte — 8 bits

Kilobyte (KB) — 1024 bytes

Megabyte (MB) -- 10242 bytes

Gigabyte (GB) — 10242 bytes

Terabyte (TB) — 1024* bytes

Petabyte (PB) — 1024° bytes

A typical instruction—execution cycle, as executed on a system with a Von Neumann

architecture, first fetches an instruction from memory and stores that instruction in the
instruction register. The instruction is then decoded and may cause operands to be fetched
from memory and stored in some internal register. After the instruction on the operands has
been executed, the result may be stored back in memory. Each storage system provides the
basic functions of storing a datum and holding that datum until it is retrieved at a later time.
The main differences among the various storage systems lie in speed, cost, size, and
volatility. The wide variety of storage systems can be organized in a hierarchy Figurel.3

according to speed and cost.

Increasing speed I registers Ij
and cost per bit 4}9 I
1 V
I cache
o 1]
L v
I main memory
Z4N I]
11 L2 ;
; 3 Increasing
I solid-state disk size
Z4N I
1l AV
magnetic disk
© I
I AV

optical disk

{}

||
1] A 4 ‘ ’

magnetic tapes

Figure 1.3 - Storage-device hierarchy
I/0 STRUCTURES
A general-purpose computer system consists of CPUs and multiple device controllers
that are connected through a common bus. Each device controller is in charge of a specific
type of device. Depending on the controller, more than one device may be attached. Seven or
more devices can be attached to the small computer-systems interface (SCSI) controller. A

device controller maintains some local buffer storage and a set of special-purpose registers.
The device controller is responsible for moving the data between the peripheral devices that it
controls and its local buffer storage. Typically, operating systems have a device driver for
each device controller. This device driver understands the device controller and provides the
rest of the operating system with a uniform interface to the device. To start an 1/0O operation,
the device driver loads the appropriate registers within the device controller.

The device controller, in turn, examines the contents of these registers to determine what
action to take (such as “read a character from the keyboard”). The controller starts the
transfer of data from the device to its local buffer. Once the transfer of data is complete, the
device controller informs the device driver via an interrupt that it has finished its operation.
The device driver then returns control to the operating system, possibly returning the data or a
pointer to the data if the operation was a read. For other operations, the device driver returns
status information. This form of interrupt-driven /O is fine for moving small amounts of data

but can produce high overhead when used for bulk data movement such as disk 1/0.

~

Direct Memory Access (DMA) is a method that allows an input/output (1/0O) device to
send or receive data directly to or from the main memory, bypassing the CPU to speed
up memory operations. The process is managed by a chip known as a DMA controller

(DMAC). y

.

To solve this problem, Direct Memory Access (DMA) is used. After setting up buffers,
pointers, and counters for the I/O device, the device controller transfers an entire block of
data directly to or from its own buffer storage to memory, with no intervention by the CPU.
Only one interrupt is generated per block, to tell the device driver that the operation has
completed, rather than the one interrupt per byte generated for low-speed devices. While the
device controller is performing these operations, the CPU is available to accomplish other
work. Some high-end systems use switch rather than bus architecture. On these systems,
multiple components can talk to other components concurrently, rather than competing for
cycles on a shared bus. The DMA is shown more effectively in Figure 1.4 which shows the

interplay of all components of a computer system.

=— instruction execution —
cycle

thread of execution

TN

instructions
and

l«—— data movement —— aata

CPU (*N) /

DMA

/ memory
device
M)

oy

Figure 1.4 Working of computer systems

>
»

js8nbai ()
ejep
dnuiajul

.

Operating systems can be classified as follows:
Multi-user: is the one that concede two or more users to use their programs at the same time.
Some of O.S permits hundreds or even thousands of users simultaneously.
Single-User: just allows one user to use the programs at one time.
Multiprocessor: Supports opening the same program more than just in one CPU.
Multitasking: Allows multiple programs running at the same time.
Single-tasking: Allows different parts of a single program running at any one time.
Real time: Responds to input instantly. Operating systems such as DOS and UNIX, do not
work in real time.

Here is a list of common services offered by an almost all operating systems:

e User Interface

o Program Execution

o File system manipulation

e Input/ Output Operations

o Communication

« Resource Allocation

o Error Detection

« Accounting

e Security and protection

COMPUTER-SYSTEM ARCHITECTURE

A computer system can be organized in a number of different ways, which we can
categorize roughly according to the number of general-purpose processors used. Different
types of Operating Systems for Different Kinds of Computer Environments are classified as

e Single processor system

e Multiprocessor system

e Clustered systems

SINGLE PROCESSOR SYSTEM

On a single processor system, there is one main CPU capable of executing a general-
purpose instruction set, including instructions from user processes. Almost all single
processor systems have other special-purpose processors as well. They may come in the form
of device-specific processors, such as disk, keyboard, and graphics controllers; or, on
mainframes, they may come in the form of more general-purpose processors, such as 1/O
processors that move data rapidly among the components of the system. All of these special
purpose processors run a limited instruction set and do not run user processes.

MULTIPROCESSOR SYSTEM

Multiprocessor Systems (also known as parallel systems or multicore systems have
two or more processors for communication, sharing the computer bus and the clock, memory,
and peripheral devices. Multiprocessor systems first appeared in servers and now it have
migrated to desktop and laptop systems. Multiple processors have appeared on mobile
devices such as smartphones and tablet computers also. Multiprocessor systems have three
main advantages:
1. Increased throughput. By increasing the number of processors, we expect to get more
work done in less time.
2. Economy of scale. Multiprocessor systems can cost less than equivalent multiple single-
processor systems, because they can share peripherals, mass storage, and power supplies. If
several programs operate on the same set of data, it is cheaper to store those data on one disk
and to have all the processors share them than to have many computers with local disks and
many copies of the data.
3. Increased reliability. If functions can be distributed properly among several processors,
then the failure of one processor will not halt the system, only slow it down. If we have ten

processors and one fails, then each of the remaining nine processors can pick upa share of

the work of the failed processor. Thus, the entire system runs only 10 percent slower, rather
than failing altogether. Increased reliability of a computer system is crucial in many
applications. The ability to continue providing service proportional to the level of surviving
hardware is called graceful degradation. Some systems go beyond graceful degradation and
are called fault tolerant, because they can suffer a failure of any single component and still
continue operation. Fault tolerance requires a mechanism to allow the failure to be detected,
diagnosed, and, if possible, corrected.
The multiprocessor systems are classified into two categories and they are

e Asymmetric multiprocessor

e Symmetric multiprocessor
Asymmetric multiprocessor is a processor in which each processor is assigned a specific
task. This scheme defines a boss—worker relationship. The boss processor schedules and
allocates work to the worker processors.
Symmetric multiprocessor (SMP), in which each processor performs all tasks within the
operating system. SMP means that all processors are peers; no boss—worker relationship
exists between processors. Figure 1.5 illustrates a typical SMP architecture. Multiprocessing
adds CPUs to increase computing power. If the CPU has an integrated memory controller,
then adding CPUs can also increase the amount of memory addressable in the system.

CPU, CPU; CPU,
registers registers registers
cache cache cache
memory

Figure 1.5 - Symmetric multiprocessing architecture
CLUSTERED SYSTEMS
Another type of multiprocessor system is a clustered system in Figure 1.6, which
gathers together multiple CPUs. Clustered systems differ from the multiprocessor systems
which are composed of two or more individual systems—or nodes—joined together. Such
systems are considered loosely coupled. Each node may be a single processor system or a

multicore system.

Clustering is usually used to provide high-availability service—that is, service will continue
even if one or more systems in the cluster fail. Generally, we obtain high availability by
adding a level of redundancy in the system. A layer of cluster software runs on the cluster
nodes. Each node can monitor one or more of the others (over the LAN). If the monitored
machine fails the monitoring machine can take ownership of its storage and restart the
applications that were running on the failed machine. The users and clients of the applications
see only a brief interruption of service. Clustering can be structured asymmetrically or
symmetrically. In asymmetric clustering, one machine is in hot-standby mode while the
other is running the applications. In symmetric clustering, two or more hosts are running

applications and are monitoring each other.

interconnect interconnect
computer computer computer

storage area
network
\—/

Figure 1.6 - General structure of a clustered system
OPERATING-SYSTEM STRUCTURE

One of the most important aspects of operating systems is the ability to multi program. A
single program cannot be kept either in the CPU or in the 1/0 devices as the processor will be
busy at all times. Single wusers frequently have multiple programs running.
Multiprogramming increases CPU utilization by organizing jobs (code and data) so that the
CPU always has one to execute.

The operating system keeps several jobs in memory simultaneously (Figure 1.7). Since
main memory is too small to accommodate all jobs, the jobs are kept initially on the disk in
the job pool. This pool consists of all processes residing on disk awaiting allocation of main
memory. The set of jobs in memory can be a subset of the jobs kept in the job pool. The
operating system picks and begins to execute one of the jobs in memory. Eventually, the job
may have to wait for some task, such as an I/O operation, to complete.

In a non-multiprogrammed system, the CPU would sit idle. In a multiprogrammed

system, the operating system simply switches to, and executes, another job. When that job

needs to wait, the CPU switches to another job, and so on. Eventually, the first job finishes
waiting and gets the CPU back.

operating system

job 1

job2

job3

job 4

Max

Figure 1.7 - Memory layout for a multiprogramming system

A time-sharing (multi-user multi-tasking) OS requires:

e Memory management

o Process management

e Job scheduling

e Resource allocation strategies

o Swap space / virtual memory in physical memory

o Interrupt handling

o File system management

e Protection and security

o Inter-process communications
Time sharing (or multitasking) is a logical extension of multiprogramming. In time-sharing
systems, the CPU executes multiple jobs by switching among them, but the switches occur so
frequently that the users can interact with each program while it is running. Time sharing
requires an interactive computer system, which provides direct communication between the
user and the system. The user gives instructions to the operating system or to a program
directly, using a input device such as a keyboard, mouse, touch pad, or touch screen, and
waits for immediate results on an output device. Accordingly, the response time should be
short—typically less than one second. A time-shared operating system allows many users to
share the computer simultaneously. A time-shared operating system uses CPU scheduling and

multiprogramming to provide each user with a small portion of a time-shared computer. Each

user has at least one separate program in memory.

[A program loaded into memory and executing is called a process.]

Time sharing and multiprogramming require that several jobs be kept simultaneously in
memory. If several jobs are ready to be brought into memory and if there is not enough room
for all of them, then the system must choose among them. Making this decision involves Job
Scheduling. When the operating system selects a job from the job pool, it loads that job into
memory for execution. Having several programs in memory at the same time requires some
form of memory management. In addition, if several jobs are ready to run at the same time,
the system must choose which job will run first. Making this decision is CPU Scheduling.
Finally, running multiple jobs concurrently requires that their ability to affect one another be
limited in all phases of the operating system, including process scheduling, disk storage, and
memory management.

The main advantage of the virtual-memory scheme is that it enables users to run
programs that are larger than actual Physical Memory. Further, it abstracts main memory
into a large, uniform array of storage, separating Logical Memory as viewed by the user
from physical memory. This arrangement frees programmers from concern over memory-
storage limitations.

OPERATING-SYSTEM OPERATIONS

Modern operating systems are interrupt driven. If there are no processes to execute, no
I/0O devices to service, and no users to whom to respond, an operating system will sit quietly,
waiting for something to happen. Events are almost always signalled by the occurrence of an
interrupt or a trap. A trap (or an exception) is a software-generated interrupt caused either by
an error (for example, division by zero or invalid memory access) or by a specific request
from a user program that an operating-system service be performed.

The interrupt-driven nature of an operating system defines that system’s general
structure. For each type of interrupt, separate segments of code in the operating system
determine what action should be taken. An interrupt service routine is provided to deal with
the interrupt. Since the operating system and the users share the hardware and software
resources of the computer system, we need to make sure that an error in a user program could

cause problems only for the one program running.

With sharing, many processes could be adversely affected by a bug in one program. For
example, if a process gets stuck in an infinite loop, this loop could prevent the correct
operation of many other processes. More subtle errors can occur in a multiprogramming
system, where one erroneous program might modify another program, the data of another
program, or even the operating system itself. Without protection against these sorts of errors,
either the computer must execute only one process at a time or all output must be suspect. A
properly designed operating system must ensure that an incorrect (or malicious) program
cannot cause other programs to execute incorrectly.

DUAL-MODE AND MULTIMODE OPERATION
In order to ensure the proper execution of the operating system, we must be able to
distinguish between the execution of operating-system code and user defined code. The
approach taken by most computer systems is to provide hardware support that allows us to
differentiate among various modes of execution.

o User mode when executing harmless code in user applications

o Kernel mode (a.k.a. system mode, supervisor mode, privileged mode) when executing
potentially dangerous code in the system kernel.

« Certain machine instructions (privileged instructions) can only be executed in kernel
mode.

o Kernel mode can only be entered by making system calls. User code cannot flip the
mode switch.

e Modern computers support dual-mode operation in hardware, and therefore most
modern OS support dual-mode operation.

o The concept of modes can be extended beyond two, requiring more than a single
mode bit CPUs that support virtualization use one of these extra bits to indicate when
the virtual machine manager, VMM, is in control of the system. The VMM has more
privileges than ordinary user programs, but not so many as the full kernel.

o System calls are typically implemented in the form of software interrupts, which
causes the hardware's interrupt handler to transfer control over to an appropriate
interrupt handler, which is part of the operating system, switching the mode bit to

kernel mode in the process.

o The interrupt handler checks exactly which interrupt was generated, checks additional
parameters (generally passed through registers) if appropriate, and then calls the
appropriate kernel service routine to handle the service requested by the system call.

o User programs' attempts to execute illegal instructions (privileged or non-existent
instructions), or to access forbidden memory areas, also generate software interrupts,
which are trapped by the interrupt handler and control is transferred to the OS, which
issues an appropriate error message, possibly dumps data to a log file for later

analysis, and then terminates the offending program.

user process
user mode

I user process executing H calls system call ‘ I return from system call (mode bit = 1)
\
A} 7
3 7
kernel trap return
eme mode bit = 0 mode bit = 1
y kernel mode
(mode bit = 0)

execute system call

Figure 1.8 - Transition from user to kernel mode

We need two separate modes of operation: user mode and kernel mode (also called
supervisor mode, system mode, or privileged mode). A bit, called the mode bit, is added to
the hardware of the computer to indicate the current mode: kernel (0) or user (1). With the
mode bit, we can distinguish between a task that is executed on behalf of the operating
system and one that is executed on behalf of the user. When the computer system is executing
on behalf of a user application, the system is in user mode.

However, when a user application requests a service from the operating system (via a
system call), the system must transition from user to kernel mode to fulfil the request. This is
shown in Figure 1.8. This architectural enhancement is useful for many other aspects of
system operation as well. At system boot time, the hardware starts in kernel mode. The
operating system is then loaded and starts user applications in user mode. Whenever a trap or
interrupt occurs, the hardware switches from user mode to kernel mode (that is, changes the
state of the mode bit to 0). Thus, whenever the operating system gains control of the
computer, it is in kernel mode. The system always switches to user mode (by setting the
mode bit to 1) before passing control to a user program. The dual mode of operation provides
us with the means for protecting the operating system from errant users—and errant users
from one another. We accomplish this protection by designating some of the machine

instructions that may cause harm as privileged instructions.

The hardware allows privileged instructions to be executed only in kernel mode. If an
attempt is made to execute a privileged instruction in user mode, the hardware does not
execute the instruction but rather treats it as illegal and traps it to the operating system.

TIMER

The operating system maintains control over the CPU. We cannot allow a user
program to get stuck in an infinite loop or to fail to call system services and never return
control to the operating system. To accomplish this goal, we can use a timer. A timer can be
set to interrupt the computer after a specified period. The period may be fixed (for example,
1/60 second) or variable (for example, from 1 millisecond to 1 second).

A variable timer is generally implemented by a fixed-rate clock and a counter. The
operating system sets the counter. Every time the clock ticks, the counter is decremented.
When the counter reaches 0, an interrupt occurs. For instance, a 10-bit counter with a 1-
millisecond clock allows interrupts at intervals from 1 millisecond to 1,024 milliseconds, in
steps of 1 millisecond. Before turning over control to the user, the operating system ensures
that the timer is set to interrupt. If the timer interrupts, control transfers automatically to the
operating system, which may treat the interrupt as a fatal error or may give the program more
time. Clearly, instructions that modify the content of the timer are privileged. We can use the
timer to prevent a user program from running too long.

A simple technique is to initialize a counter with the amount of time that a program is
allowed to run. A program with a 7-minute time limit, for example, would have its counter
initialized to 420. Every second, the timer interrupts, and the counter is decremented by 1. As
long as the counter is positive, control is returned to the user program. When the counter
becomes negative, the operating system terminates the program for exceeding the assigned
time limit.

PROCESS MANAGEMENT

A program does nothing unless its instructions are executed by a CPU. A program in
execution, as mentioned, is a process. A time-shared user program such as a compiler is a
process. A process needs certain resources—including CPU time, memory, files, and 1/0
devices—to accomplish its task. These resources are either given to the process when it is
created or allocated to it while it is running.

A program by itself is not a process. A program is a passive entity, like the contents of a

file stored on disk, whereas a process is an active entity.

A single-threaded process has one program counter specifying the next instruction to
execute. The execution of such a process must be sequential. The CPU executes one
instruction of the process after another, until the process completes.

A multithreaded process has multiple program counters, each pointing to the next instruction
to execute for a given thread. A process is the unit of work in a system. A system consists of
a collection of processes, some of which are operating-system processes (those that execute
system code) and the rest of which are user processes (those that execute user code). All these
processes can potentially execute concurrently—by multiplexing on a single CPU.
An OS is responsible for the following tasks with regards to process management:

o Creating and deleting both user and system processes

o Ensuring that each process receives its necessary resources, without interfering with

other processes.
e Suspending and resuming processes
o Process synchronization and communication

o Deadlock handling
MEMORY MANAGEMENT

The main memory is central to the operation of a modern computer system. Main
memory is a large array of bytes, ranging in size from hundreds of thousands to billions. Each
byte has its own address. Main memory is a repository of quickly accessible data shared by
the CPU and 1/O devices. The central processor reads instructions from main memory during
the instruction-fetch cycle and both reads and writes data from main memory during the data-
fetch cycle.

For a program to be executed, it must be mapped to absolute addresses and loaded into
memory. As the program executes, it accesses program instructions and data from memory
by generating these absolute addresses. Eventually, the program terminates, its memory space
is declared available, and the next program can be loaded and executed. To improve both the
utilization of the CPU and the speed of the computer’s response to its users, general-purpose
computers must keep several programs in memory, creating a need for memory management.

An OS is responsible for the following tasks with regards to memory management:

o Keeping track of which blocks of memory are currently in use, and by which

processes.

o Determining which blocks of code and data to move into and out of memory, and
when.

o Allocating and deallocating memory as needed. (E.g. new, malloc)

STORAGE MANAGEMENT

FILE-SYSTEM MANAGEMENT
An OS is responsible for the following tasks with regards to filesystem management:
o Creating and deleting files and directories
e Supporting primitives for manipulating files and directories. (open, flush, etc.)
« Mapping files onto secondary storage.
o Backing up files onto stable permanent storage media.
MASS-STORAGE MANAGEMENT
An OS is responsible for the following tasks with regards to mass-storage management:
o Free disk space management
« Storage allocation
o Disk scheduling
Note the trade-offs regarding size, speed, longevity, security, and re-writable between
different mass storage devices, including floppy disks, hard disks, tape drives, CDs,
DVDs, etc.
CACHING
« There are many cases in which a smaller higher-speed storage space serves as a cache,
or temporary storage, for some of the most frequently needed portions of larger
slower storage areas.
e The hierarchy of memory storage ranges from CPU registers to hard drives and
external storage is reflected in Table 1.
e The OS is responsible for determining what information to store in what level of
cache, and when to transfer data from one level to another.

Table 1. Performance of various levels of storage

Level 1 2 3 4 5

Name registers cache mainmemory | solid state disk | magnetic disk

Typical size <1KB <16MB <64GB <118 <10TB
Implementation custom memory [on-chipor [CMOS SRAM flash memory | magnetic disk
technology with multiple | off-chip

ports CMOS CMOS SRAM
Access time (ns) 0.25-05 05-25 80-250 25,000- 50,000 | 5,000,000
Bandwidth (MB/sec) | 20,000-100,000 | 5,000-10,000 |1,000- 5,000 500 20-150
Managed by compiler hardware operating system | operating system | operating system
Backed by cache main memory | disk disk disk or tape

The proper choice of cache management can have a profound impact on system
performance.

Data read in from disk follows a migration path from the hard drive to main memory,
then to the CPU cache, and finally to the registers before it can be used, while data
being written follows the reverse path. Each step (other than the registers) will
typically fetch more data than is immediately needed, and cache the excess in order to
satisfy future requests faster. For writing, small amounts of data are frequently
buffered until there is enough to fill an entire "block™ on the next output device in the
chain.

The issues get more complicated when multiple processes (or worse multiple
computers) access common data, as it is important to ensure that every access reaches
the most up-to-date copy of the cached data (amongst several copies in different cache
levels.)

In a hierarchical storage structure, the same data may appear in different levels of the

storage system. For example, suppose that an integer A that is to be incremented by 1 is

located in file B, and file resides on magnetic disk. The increment operation proceeds by

first issuing an 1/O operation to copy the disk block on which A resides to main memory.

This operation is followed by copying A to the cache and to an internal register. Thus,

the copy of A appears in several places: on the magnetic disk, in main memory, in the

cache, and in an internal register shown in Figure 1.9. Once the increment takes place in

the internal register, the value of A differs in the various storage systems. The value of A

becomes the same only after the new value of A is written from the internal register back

to the magnetic disk.

magnetic main hardware
disk I’ memory j cachie I’ register

Figure 1.9 - Migration of integer A from disk to register

1/0 SYSTEMS

The 1/0 subsystem consists of several components:

A memory-management component that includes buffering, caching, and spooling.

A general device-driver interface.

Drivers for specific hardware devices.

(UNIX implements multiple device interfaces for many types of devices, one for
accessing the device character by character and one for accessing the device block by
block. These can be seen by doing a long listing of /dev, and looking for a "c" or "b"
in the first position. You will also note that the "size" field contains two numbers,
known as the major and minor device numbers, instead of the normal one. The major
number signifies which device driver handles 1/0O for this device, and the minor
number is a parameter passed to the driver to let it know which specific device is
being accessed. Where a device can be accessed as either a block or character device,

the minor numbers for the two options usually differ by a single bit.)
PROTECTION AND SECURITY

Protection involves ensuring that no process access or interfere with resources to
which they are not entitled, either by design or by accident. (E.g. "protection faults”
when pointer variables are misused.)

Security involves protecting the system from deliberate attacks, either from legitimate
users of the system attempting to gain unauthorized access and privileges, or external

attackers attempting to access or damage the system.

KERNAL DATA STRUCTURES

LISTS, STACKS, AND QUEUES

An array is a simple data structure in which each element can be accessed directly.

Each item in an array can be accessed directly, the items in a list must be accessed in a

particular order. That is, a list represents a collection of data values as a sequence. The most

common method for implementing this structure is a linked list, in which items are linked to

one another. Linked lists are of several types:

* Ina singly linked list, each item points to its successor, as illustrated in Figure 1.10.
data data data null

I||l||l||._|._.|
-+

Figure 1.10 - Singly linked list
* In a doubly linked list, a given item can refer either to its predecessor or to its successor, as

illustrated in Figure 1.11.

v [I | { |
data null data data data null
. - I v ey

| Lt Lt |

Figure 1.11 - Doubly linked list
* In a circularly linked list, the last element in the list refers to the first element, rather than to
null, as illustrated in Figure 1.12.

| |
Idatal I |datai l Idatal I . | . data
| to Lt Lt

Figure 1.12 - Circularly linked list
Linked lists accommodate items of varying sizes and allow easy insertion and deletion of
items.

A stack is a sequentially ordered data structure that uses the last in, first out (LIFO)
principle for adding and removing items, meaning that the last item placed onto a stack is the
first item removed. The operations for inserting and removing items from a stack are known
as push and pop, respectively. An operating system often uses a stack when invoking
function calls. Parameters, local variables, and the return address are pushed onto the stack
when a function is called; returning from the function call pops those items off the stack.

A queue, in contrast, is a sequentially ordered data structure that uses the first in, first
out (FIFO) principle: items are removed from a queue in the order in which they were
inserted. There are many everyday examples of queues, including shoppers waiting in a
checkout line at a store and cars waiting in line at a traffic signal. Queues are also quite
common in operating systems—jobs that are sent to a printer are typically printed in the order
in which they were submitted.

TREES

A tree is a data structure that can be used to represent data hierarchically. Data values
in a tree structure are linked through parent—child relationships. In a general tree, a parent
may have an unlimited number of children. In a binary tree, a parent may have at most two
children, which we term the left child and the right child. A binary search tree additionally
requires an ordering between the parent’s two children in which le f t child <= right child.

Figure 1.13 provides an example of a binary search tree.

(D)
® ©

Figure 1.13 - Binary search trees
COMPUTING ENVIRONMENTS
Operating systems are used in a variety of computing environments such as
e Traditional computing
e Distributed computing
e Mobile computing
e Client server computing
e Peer to peer computing
e Virtualization
e Cloud computing
e Real time embedded systems
TRADITIONAL COMPUTING
PCs connected to a network, with servers providing file and print services. Remote
access was awkward, and portability was achieved by use of laptop computers. Terminals
attached to mainframes were prevalent at many companies as well, with even fewer remote
access and portability options. The current trend is toward providing more ways to access
these computing environments. Web technologies and increasing WAN bandwidth are

stretching the boundaries of traditional computing. Companies establish portals, which

provide Web accessibility to their internal servers. Network computers (or thin clients)
which are essentially terminals that understand web-based computing—are used in place of
traditional workstations where more security or easier maintenance is desired.
MOBILE COMPUTING
« Computing on small handheld devices such as smart phones or tablets. (As opposed to
laptops, which still fall under traditional computing)
« May take advantage of additional built-in sensors, such as GPS, tilt, compass, and
inertial movement.
o Typically connect to the Internet using wireless networking (IEEE 802.11) or cellular
telephone technology.
o Limited in storage capacity, memory capacity, and computing power relative to a PC.
o Generally uses slower processors that consume less battery power and produce less
heat.
e The two dominant OSes today are Google Android and Apple iOS.
DISTRIBUTED SYSTEMS
o Distributed Systems consist of multiple, possibly heterogeneous, computers connected
together via a network and cooperating in some way, form, or fashion.
o Networks may range from small tight LANSs to broad reaching WANSs.
o WAN = Wide Area Network, such as an international corporation
o MAN =Metropolitan Area Network, covering a region the size of a city for
example.
o LAN =Local Area Network, typical of a home, business, single-site
corporation, or university campus.
o PAN = Personal Area Network, such as the bluetooth connection between
your PC, phone, headset, car, etc.
o Network access speeds, throughputs, reliabilities, are all important issues.
e OS view of the network may range from just a special form of file access to complex
well-coordinated network operating systems.
o Shared resources may include files, CPU cycles, RAM, printers, and other resources.
CLIENT-SERVER COMPUTING

A defined server provides services (HW or SW) to other systems which serve as

clients. The Figure 1.14 reflects the general structure of a client server system.

e A process may act as both client and server of either the same or different resources.
o Served resources may include disk space, CPU cycles, time of day, IP name

information, graphical displays (X Servers), or other resources.
client
desktop
client
laptop
client
smartphone

Figure 1.14 - General structure of a client-server system
Peer-to-Peer Computing

o Any computer or process on the network may provide services to any other which
requests it. The Figure 1.15 shows the peer to peer computing.

o May employ a central "directory"” server for looking up the location of resources, or
may use peer-to-peer searching to find resources.

E.g. Skype uses a central server to locate a desired peer, and then further
communication is peer to peer.

Figure 1.15 - Peer-to-peer system with no centralized service
VIRTUALIZATION

Allows one or more "guest™ operating systems to run on virtual machines hosted by a
single physical machine and the virtual machine manager.

Useful for cross-platform development and support.

For example, a student could run UNIX on a virtual machine, hosted by a virtual
machine manager on a Windows based personal computer. The student would have

full root access to the virtual machine, and if it crashed, the underlying Windows
machine should be unaffected.

System calls have to be caught by the VMM and translated into (different) system
calls made to the real underlying OS.

Virtualization can slow down program that have to run through the VMM, but can
also speed up some things if virtual hardware can be accessed through a cache instead
of a physical device this is shown in Figure 1.16.

Depending on the implementation, programs can also run simultaneously on the

native OS, bypassing the virtual machines.

processes
processes
processes processes
rogrammi
o P f:\% e“:fa i ng kernel kernel kernel
kel VM1 VM2 VM3
virtual machine
manager
hardware
hardware
(a) (b)

Figure 1.16 - VMWare
CLOUD COMPUTING
Delivers computing, storage, and applications as a service over a network.
Types of cloud computing:
o Public cloud - Available to anyone willing to pay for the service.
o Private cloud - Run by a company for internal use only.
o Hybrid cloud - A cloud with both public and private components.
o Software as a Service - SaaS - Applications such as word processors
available via the Internet
o Platform as a Service - PaaS - A software stack available for application use,
such as a database server
o Infrastructure as a Service - laaS - Servers or storage available on the
Internet, such as backup servers, photo storage, or file storage.

o Service providers may provide more than one type of service

o Clouds may contain thousands of physical computers, millions of virtual ones, and
petabytes of total storage. In Figure 1.17 cloud computing environment is shown.
e Web hosting services may offer (one or more) virtual machine(s) to each of their

clients.

., customer
\{equests

~
~

- cloud
firewall customer
interface
T
load balancer H cloud
| management

commands

1

1

i

[[[[v
virtual virtual storage cloud

machines| |machines manggment
services

servers servers

Figure 1.17 - Cloud computing

Real-Time Embedded Systems
o Embedded into devices such as automobiles, climate control systems, process control,
and even toasters and refrigerators.
« May involve specialized chips, or generic CPUs applied to a particular task. Process
control devices require real-time (interrupt driven) OS. Response time can be critical
for many such devices.
2. OPERATING SYSTEM STRUCTURES

An operating system provides the environment within which programs are executed.
Internally, operating systems vary greatly in their makeup, since they are organized along
many different lines. The design of a new operating system is a major task. It is important
that the goals of the system be well defined before the design begins. These goals form the
basis for choices among various algorithms and strategies.

SERVICES OF OPERATING SYSTEMS
An operating system provides an environment for the execution of programs. It

provides certain services to programs and to the users of those programs. The specific
services provided, of course, differ from one operating system to another, but we can identify

common classes. These operating system services are provided for the convenience of the

operating-system services and the communications between them.

programmer, to make the programming task easier. Figure 2.1 shows one view of the various

user and other system programs

GUI

batch

command line

user interfaces

system calls

program
execution

l{e]
operations

file
systems

communication

resource
allocation

error
detection

services

protection
and
security

accounting

operating system

hardware

Figure 2.1 A View Of Operating System Services.
User interface.

Almost all operating systems have a user interface (Ul). This interface can take
several forms. One is a command-line interface (CLI), which uses text commands and a
method for entering them (say, a keyboard for typing in commands in a specific format with
specific options). Another is a batch interface, in which commands and directives to control
those commands are entered into files, and those files are executed. Most commonly, a
graphical user interface (GUI) is used. Here, the interface is a window system with a
pointing device to direct I/O, choose from menus, and make selections and a keyboard to
enter text. Some systems provide two or all three of these variations.

Program execution.

The system must be able to load a program into memory and to run that program. The
program must be able to end its execution, either normally or abnormally (indicating error).
1/0O operations.

A running program may require 1/0O, which may involve a file or an 1/0 device. For
specific devices, special functions may be desired (such as recording to a CD or DVD drive
or blanking a display screen). For efficiency and protection, users usually cannot control 1/0
devices directly. Therefore, the operating system must provide a means to do /0.

File-system manipulation.

The file system is of particular interest. Obviously, programs need to read and write
files and directories. They also need to create and delete them by name, search for a given
file, and list file information. Finally, some operating systems include permissions
management to allow or deny access to files or directories based on file ownership. Many
operating systems provide a variety of file systems, sometimes to allow personal choice and
sometimes to provide specific features or performance characteristics.

Communications.

Communication may occur between processes that are executing on the same
computer or between processes that are executing on different computer systems tied together
by a computer network. Communications may be implemented via shared memory, in which
two or more processes read and write to a shared section of memory, or message passing, in
which packets of information in predefined formats are moved between processes by the
operating system.

Error detection.

The operating system needs to be detecting and correcting errors constantly. Errors
may occur in the CPU and memory hardware (such as a memory error or a power failure), in
I/0O devices (such as a parity error on disk, a connection failure on a network, or lack of paper
in the printer), and in the user program (such as an arithmetic overflow, an attempt to access
an illegal memory location, or a too-great use of CPU time). For each type of error, the
operating system should take the appropriate action to ensure correct and consistent
computing. Sometimes, it has no choice but to halt the system. At other times, it might
terminate an error causing process or return an error code to a process for the process to
detect and possibly correct. Another set of operating system functions exists not for helping
the user but rather for ensuring the efficient operation of the system itself. Systems with
multiple users can gain efficiency by sharing the computer resources among the users.
Resource allocation.

When there are multiple users or multiple jobs running at the same time, resources
must be allocated to each of them. The operating system manages many different types of
resources. Some (such as CPU cycles, main memory, and file storage) may have special
allocation code, whereas others (such as I/O devices) may have much more general request
and release code. For instance, in determining how best to use the CPU, operating systems

have CPU-scheduling routines that take into account the speed of the CPU, the jobs that must

be executed, the number of registers available, and other factors. There may also be routines
to allocate printers, USB storage drives, and other peripheral devices.
Accounting.

We want to keep track of which users use how much and what kinds of computer
resources. This record keeping may be used for accounting (so that users can be billed) or
simply for accumulating usage statistics. Usage statistics may be a valuable tool for
researchers who wish to reconfigure the system to improve computing services.

Protection and security.

The owners of information stored in a multiuser or networked computer system may
want to control use of that information. When several separate processes execute
concurrently, it should not be possible for one process to interfere with the others or with the
operating system itself. Protection involves ensuring that all access to system resources is
controlled. Security of the system from outsiders is also important. Such security starts with
requiring each user to authenticate. If a system is to be protected and secure, precautions must

be instituted throughout it. A chain is only as strong as its weakest link.
USER AND OPERATING-SYSTEM INTERFACE

Operating system has two fundamental approaches.
1. Command-Line Interface or Command Interpreter that allows users to directly
enter commands to be performed by the operating system.
2. Users to interface with the operating system via a Graphical User Interface or
GUI.
COMMAND INTERPRETER

e Gets and processes the next user request, and launches the requested programs.

e In some systems the Cl may be incorporated directly into the kernel.

e More commonly the CI is a separate program that launches once the user logs in or
otherwise accesses the system.

e UNIX, for example, provides the user with a choice of different shells, Bourne shell,
C shell, Bourne-Again shell, Korn shell, and others which may either be configured
to launch automatically at login, or which may be changed on the fly. Figure 2.2 shows
the Bourne shell command interpreter being used on Solaris 10.

o Different shells provide different functionality, in terms of certain commands that are

implemented directly by the shell without launching any external programs. Most

provide at least a rudimentary command interpretation structure for use in shell script

programming (loops, decision constructs, variables)

e An interesting distinction is the processing of wild card file naming and 1/O re-

direction. On UNIX systems those details are handled by the shell, and the program

which is launched sees only a list of filenames generated by the shell from the wild

cards. On a DOS system, the wild cards are passed along to the programs, which can

interpret the wild cards as the program sees fit.

&2

& Termina

BEs

File Edit View Terminal Tabs Help

fdo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

sd0 0.0 0.2 0.0 0.2 0.0 0.0 0.4 0 ©

sdl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O
extended device statistics

device r/s w/s kr/s kw/s wait actv svc_t %w %b
fdo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O
sd0 0.6 0.0 38.4 0.0 0.0 0.0 8.2 0 0
sdl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 ©
(root@pbg-nv64-vm) - (11/pts)-(00:53 15-Jun-2007)-(global)
~(/var/tmp/systen-contents/scripts)# swap -sh
total: 1.1C allocated + 190M reserved = 1.3G used, 1.6GC available
(root@pbg-nv64-vm) - (12/pts)-(00:53 15-Jun-2007)-(global)
~(/var/top/systen-contents/scripts)# uptime

12:53am up 9 min(s), 3 users, Tload average: 33.29, 67.68, 36.81
(root@bg-nv64-vm) - (13/pts) -(00:53 15-Jun-2007)-(global)
-(/var/tmp/systen-contents/scripts)€ w

4:07pm up 17 day(s), 15:24, 3 users, Tload average: 0.09, 0.11, 8.66
User tty login@ idle JCPU PCPU what
root console 15Jun0718days 1 /fusr/bin/ssh-agent -- /fusr/bi}
n/d
root pts/3 15Jun07 18 4 w
root pts/4 15Jun0718days W
(root@pbg-nv64-vm) - (14/pts)-(16:07 02-Jul-2007)-(global)
-(/var/tap/systen-contents/scripts)#

)

v

Figure 2.2 The Bourne shell command interpreter in Solrais 10.

GRAPHICAL USER INTERFACE (GUI)

A second strategy for interfacing with the operating system is through a user friendly

graphical user interface, or GUI. Here, rather than entering commands directly via a

command-line interface, users employ a mouse-based window and- menu system

characterized by a desktop metaphor. The user moves the mouse to position its pointer on

images, or icons, on the screen (the desktop) that represent programs, files, directories, and

system functions. Depending on the mouse pointer’s location, clicking a button on the mouse

can invoke a program, select a file or directory—known as a folder—or pull down a menu

that contains commands.

e Generally implemented as a desktop metaphor, with file folders, trash cans, and

resource icons.

e Icons represent some item on the system, and respond accordingly when the icon is
activated.

o First developed in the early 1970's at Xerox PARC research facility.

e In some systems the GUI is just a front end for activating a traditional command line
interpreter running in the background. In others the GUI is a true graphical shell in its
own right.

e Mac has traditionally provided ONLY the GUI interface. With the advent of OSX
(based partially on UNIX), a command line interface has also become available.

e Because mice and keyboards are impractical for small mobile devices, these normally
use a touch-screen interface today that responds to various patterns of swipes or
"gestures”. When these first came out they often had a physical keyboard and/or a
trackball of some kind built in, but today a virtual keyboard is more commonly
implemented on the touch screen.

CHOICE OF INTERFACE
The choice of whether to use a command-line or GUI interface is mostly one of

personal preference System administrators who manage computers and power users who
have deep knowledge of a system frequently use the command-line interface. It is more
efficient, giving faster access to the activities needed to perform. Indeed, on some systems,
only a subset of system functions is available via the GUI, leaving the less common tasks to
those who are command-line knowledgeable. Further, command line interfaces usually make
repetitive tasks easier, in part because they have their own programmability. For example, if a
frequent task requires a set of command-line steps, those steps can be recorded into a file, and
that file can be run just like a program. The program is not compiled into executable code but
rather is interpreted by the command-line interface. These shell scripts are very common on
systems that are command-line oriented, such as UNIX and Linux.

The user interface can vary from system to system and even from user to user within a
system. It typically is substantially removed from the actual system structure. The design of a
useful and friendly user interface is therefore not a direct function of the operating system. In
this book, we concentrate on the fundamental problems of providing adequate service to user
programs. From the point of view of the operating system, we do not distinguish between

user programs and system programs.
SYSTEM CALLS

« System calls provide a means for user or application programs to call upon the
services of the operating system.

o Generally written in C or C++, although some are written in assembly for optimal
performance.

o Figure 2.3 illustrates the sequence of system calls required to copy a file:

source file »| destination file

a4 Example System Call Sequence N

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

Terminate normally

& 4
Figure 2.3 Usage of System Calls

As an example of a standard API, consider the read () function that is available in UNIX and
Linux systems. The API for this function is obtained from the man page by invoking the
command
man read
on the command line. A description of this API appears below:
#include <unistd.h>
ssize_t read(int fd, void *buf, size_t count)

A program that uses the read() function must include the unistd.h header file, as this
file defines the ssize t and size t data types (among other things). The parameters passed to
read() are as follows:

« int fd—the file descriptor to be read
« void *buf—a buffer where the data will be read into

* size t count—the maximum number of bytes to be read into the

Buffer On a successful read, the number of bytes read is returned. A return value of 0
indicates end of file. If an error occurs, read() returns —1. Figure 2.4 shows the working of the
parameters for the system calls as a table.

—1 x|

register

X: parameters
for call

\ 4

use parameters code for
load address X from table X system
system call 13 — > call 13

user program

operating system
Figure 2.4 - Passing of parameters as a table
TYPES OF SYSTEM CALLS

System calls can be grouped roughly into six major categories: process control, file
manipulation, device manipulation, information maintenance, communications, and
protection.
Most of the system calls support, or supported by, concepts and functions. Figure 2.5
summarizes the types of system calls normally provided by an operating system. Examples
are provided for the actual counterparts to the system calls for Windows, UNIX, and Linux

systems.

EXAMPLES OF WINDOWS AND UNIX SYSTEM CALLS

Windows Unix
Process CreateProcess() fork()
Control ExitProcess() exit()
WaitForSingleObject () wait ()
File CreateFile() open()
Manipulation ReadFile() read()
WriteFile() write()
CloseHandle (D close()
Device SetConsoleMode () ioctl()
Manipulation ReadConsole() read()
WriteConsole() write()
Information GetCurrentProcessID() getpid ()
Maintenance SetTimer() alarm()
Sleep() sleep()
Communication CreatePipe() pipe()
CreateFileMapping() shmget ()
MapViewOfFile () mmap ()
Protection SetFileSecurity () chmod ()
InitlializeSecurityDescriptor() umask()
SetSecurityDescriptorGroup() chown ()

Figure 2.5 Example for UNIX and windows system calls

The example of system calls for UNIX and windows is shown in the Figure 2.6

e TProcess control
<o end, abort
o load, execute
© create process, terminate process
o get process attributes, set process attributes

o wait for time

0

wait event, signal event
o allocate and free memory

® File management
o create file, delete file

o open, close
o read, write, reposition
o get file attributes, set file attributes

e Device management
o request device, release device

o read, write, reposition
o get device attributes, set device attributes
o logically attach or detach devices

e Information maintenance
o get time or date, set time or date

o get system data, set system data
o get process, file, or device attributes
o set process, file, or device attributes

e Communications
o create, delete communication connection

o send, receive messages
o transfer status information

o attach or detach remote devices
Figure 2.6 Types of System calls
PROCESS CONTROL

A running program needs to be able to halt its execution either normally (end()) or
abnormally (abort()). If a system call is made to terminate the currently running program
abnormally, or if the program runs into a problem and causes an error trap, a dump of
memory is sometimes taken and an error message generated.

The dump is written to disk and may be examined by a debugger—a system program
designed to aid the programmer in finding and correcting errors, or bugs—to determine the
cause of the problem. Under either normal or abnormal circumstances, the operating system
must transfer control to the invoking command interpreter. The command interpreter then

reads the next command. In an interactive system, the command interpreter simply continues

with the next command; it is assumed that the user will issue an appropriate command to

respond to any error.

Process control system calls include end, abort, load, execute, create process,
terminate process, get/set process attributes, wait for time or event, signal event, and
allocate and free memory.
Processes must be created, launched, monitored, paused, resumed, and eventually
stopped.
When one process pauses or stops, then another must be launched or resumed
When processes stop abnormally it may be necessary to provide core dumps and/or
other diagnostic or recovery tools.
Compare DOS (a single-tasking system) with UNIX (a multi-tasking system).
o When a process is launched in DOS, the command interpreter first unloads as
much of itself as it can to free up memory, then loads the process and transfers
control to it. The interpreter does not resume until the process has completed,

as shown in Figure 2.7

free memory

free memory

process
command
interpreter command
interpreter
kernel kernel
(a) (b)

Figure 2.7 - MS-DOS execution. (a) At system start up. (b) Running a program.

o Because UNIX is a multi-tasking system, the command interpreter remains
completely resident when executing a process, as shown in Figure 2.11
below.

The user can switch back to the command interpreter at any time, and can place the
running process in the background even if it was not originally launched as a

background process.

o The command interpreter first executes a "fork™ system call, which creates a second
process which is an exact duplicate (clone) of the original command interpreter. The
original process is known as the parent, and the cloned process is known as the child,
with its own unique process ID and parent ID.

o The child process then executes an "exec" system call, which replaces its code with
that of the desired process. Figure 2.8 shows the FreeBSD running multiple programs.

e The parent (command interpreter) normally waits for the child to complete before
issuing a new command prompt, but in some cases it can also issue a new prompt
right away, without waiting for the child process to complete. (The child is then said

to be running "in the background", or "as a background process".)

process D

free memory

process C

interpreter

process B

kernel

Figure 2.8 - FreeBSD running multiple programs
FILE MANAGEMENT
« File management system calls include create file, delete file, open, close, read, write,
reposition, get file attributes, and set file attributes.
e These operations may also be supported for directories as well as ordinary files.
e (The actual directory structure may be implemented using ordinary files on the file
system, or through other means.
DEVICE MANAGEMENT
« Device management system calls include request device, release device, read, write,
reposition, get/set device attributes, and logically attach or detach devices.
« Devices may be physical (e.g. disk drives), or virtual / abstract (e.qg. files, partitions,
and RAM disks).

Some systems represent devices as special files in the file system, so that accessing

the "file" calls upon the appropriate device drivers in the OS. See for example the /dev

directory on any UNIX system.

INFORMATION MAINTENANCE

Information maintenance system calls include calls to get/set the time, date, system
data, and process, file, or device attributes.

Systems may also provide the ability to dump memory at any time, single step
programs pausing execution after each instruction, and tracing the operation of

programs, all of which can help to debug programs.

COMMUNICATION

Communication system calls create/delete communication connection, send/receive
messages, transfer status information, and attach/detach remote devices.
The message passing model must support calls to:

o ldentify a remote process and/or host with which to communicate.

o Establish a connection between the two processes.

o Open and close the connection as needed.

o Transmit messages along the connection.

o Wait for incoming messages, in either a blocking or non-blocking state.

o Delete the connection when no longer needed.
The shared memory model must support calls to:

o Create and access memory that is shared amongst processes and threads.

o Provide locking mechanisms restricting simultaneous access.

o Free up shared memory and/or dynamically allocate it as needed.
Message passing is simpler and easier, (particularly for inter-computer
communications), and is generally appropriate for small amounts of data.
Shared memory is faster, and is generally the better approach where large amounts of
data are to be shared, (particularly when most processes are reading the data rather
than writing it, or at least when only one or a small number of processes need to

change any given data item.)

PROTECTION

Protection provides mechanisms for controlling which users / processes have access

to which system resources.

o System calls allow the access mechanisms to be adjusted as needed, and for non-

privileged users to be granted elevated access permissions under carefully controlled

temporary circumstances.

e Once only of concern on multi-user systems, protection is now important on all

systems, in the age of ubiquitous network connectivity.
SYSTEM PROGRAMS

o System programs provide OS functionality through separate applications, which are

not part of the kernel or command interpreters. They are also known as system

utilities or system applications.

e Most systems also ship with useful applications such as calculators and simple

editors, (e.g. Notepad). Some debate arises as to the border between system and non-

system applications.

o System programs may be divided into these categories:

O

File management - programs to create, delete, copy, rename, print, list, and
generally manipulate files and directories.

Status information - Ultilities to check on the date, time, number of users,
processes running, data logging, etc. System registries are used to store and
recall configuration information for particular applications.

File modification - e.g. text editors and other tools which can change file
contents.

Programming-language support - E.g. Compilers, linkers, debuggers,
profilers, assemblers, library archive management, interpreters for common
languages, and support for make.

Program loading and execution - loaders, dynamic loaders, overlay loaders,
etc., as well as interactive debuggers.

Communications - Programs for providing connectivity between processes
and users, including mail, web browsers, remote logins, file transfers, and
remote command execution.

Background services - System daemons are commonly started when the
system is booted, and run for as long as the system is running, handling
necessary services. Examples include network daemons, print servers, process

schedulers, and system error monitoring services.

e Most operating systems today also come complete with a set of application
programs to provide additional services, such as copying files or checking the time
and date.

o Most users' views of the system is determined by their command interpreter and the
application programs. Most never make system calls through the API, (with the

exception of simple (file) 1/0 in user-written programs.)

OPERATING-SYSTEM DESIGN AND IMPLEMENTATION
DESIGN GOALS

Requirements define properties which the finished system must have, and are a

necessary first step in designing any large complex system.

o User requirements are features that users care about and understand, and are
written in commonly understood vernacular. They generally do not include
any implementation details, and are written similar to the product description
one might find on a sales brochure or the outside of a shrink-wrapped box.

o System requirements are written for the developers, and include more details
about implementation specifics, performance requirements, compatibility
constraints, standards compliance, etc. These requirements serve as a
"contract™ between the customer and the developers, (and between developers
and subcontractors), and can get quite detailed.

« Requirements for operating systems can vary greatly depending on the planned scope
and usage of the system. (Single user / multi-user, specialized system / general
purpose, high/low security, performance needs, operating environment, etc.)

MECHANISMS AND POLICIES

o Policies determine what is to be done. Mechanisms determine how it is to be
implemented.

o If properly separated and implemented, policy changes can be easily adjusted without
re-writing the code, just by adjusting parameters or possibly loading new data /
configuration files. For example the relative priority of background versus foreground

tasks.

IMPLEMENTATION

o Traditionally OSes were written in assembly language. This provided direct control
over hardware-related issues, but inextricably tied a particular OS to a particular HW
platform.

« Recent advances in compiler efficiencies mean that most modern OS are written in C,
or more recently, C++. Critical sections of code are still written in assembly language,

o Operating systems may be developed using emulators of the target hardware,
particularly if the real hardware is unavailable or not a suitable platform for

development, (e.g. smart phones, game consoles, or other similar devices.)
OPERATING-SYSTEM STRUCTURE

For efficient performance and implementation an OS should be partitioned into separate
subsystems, each with carefully defined tasks, inputs, outputs, and performance
characteristics. These subsystems can then be arranged in various architectural
configurations:
SIMPLE STRUCTURE

When DOS was originally written its developers had no idea how big and important it
would eventually become. It was written by a few programmers in a relatively short
amount of time, without the benefit of modern software engineering techniques, and then
gradually grew over time to exceed its original expectations. It does not break the system
into subsystems, and has no distinction between user and kernel modes, allowing all
programs direct access to the underlying hardware. (Note that user versus kernel mode

was not supported by the 8088 chip set anyway, so that really wasn't an option back then.)

application program

ROM BIOS device drivers

Figure 2.9 - MS-DOS layer structure

The original UNIX OS used a simple layered approach, but almost all the OS was in one
big layer, not really breaking the OS down into layered subsystems:

(the users)
shells and commands
compilers and interpreters
system libraries
system-call interface to the kernel
5 signals terminal file system CPU scheduling
€ handling swapping block I/O page replacement
2 character I/O system system demand paging
terminal drivers disk and tape drivers virtual memory
L kernel interface to the hardware
terminal controllers device controllers
terminals

memory controllers
disks and tapes

physical memory

Figure 2.10 - Traditional UNIX system structure
LAYERED APPROACH

Another approach is to break the OS into a number of smaller layers, each of

which rests on the layer below it, and relies solely on the services provided by the
next lower layer.

e This approach allows each layer to be developed and debugged independently,
with the assumption that all lower layers have already been debugged and are
trusted to deliver proper services.

e The problem is deciding what order in which to place the layers, as no layer can
call upon the services of any higher layer, and so many chicken-and-egg situations
may arise.

o Layered approaches can also be less efficient, as a request for service from a
higher layer has to filter through all lower layers before it reaches the HW,
possibly with significant processing at each step.

o Figure 2.11 shows the details of the layered operating system.

e 2.7.3 MICROKERNELS

« The basic idea behind micro kernels is to remove all non-essential services from
the kernel, and implement them as system applications instead, thereby making
the kernel as small and efficient as possible. Most microkernels provide basic
process and memory management, and message passing between other services,
and not much more.

e Security and protection can be enhanced, as most services are performed in user

mode, not kernel mode.

= Iayer N T
user interface

7\

{ IayerO
\ hardware J

\\ “ /,

Figure 2.11- A Iayered operating system
System expansion can also be easier, because it only involves adding more system
applications, not rebuilding a new kernel. Mach was the first and most widely known

microkernel, and now forms a major component of Mac OSX.

Windows NT was originally microkernel, but suffered from performance problems
relative to Windows 95. NT 4.0 improved performance by moving more services into the
kernel, and now XP is back to being more monolithic. Another microkernel example is

QNX, a real-time OS for embedded systems.

Application File Device user

Program System Driver mode

& : & : =
merprocesx memory CPU kemnel
Communication managment scheduling mode

4 microkernel 4 _

- v
hardware

Figure 2.12 - Architecture of a typical microkernel
MODULES

e Modern OS development is object-oriented, with a relatively small core kernel and a
set of modules which can be linked in dynamically. See for example the Solaris
structure, as shown in Figure 2.13 below.

e Modules are similar to layers in that each subsystem has clearly defined tasks and
interfaces, but any module is free to contact any other module, eliminating the
problems of going through multiple intermediary layers, as well as the chicken-and-
egg problems.

e The kernel is relatively small in this architecture, similar to microkernels, but the
kernel does not have to implement message passing since modules are free to contact

each other directly.

scheduling
classes

device and
bus drivers

core Solaris
kernel

loadable

miscellaneous
system calls

modules

executable
formats

STREAMS
modules

Figure 2.13 Solaris loadable modules
PROCESS MANAGEMENT

A process can be thought of as a program in execution. A process will need certain
resources—such as CPU time, memory, files, and 1/O devices —to accomplish its task. These
resources are allocated to the process either when it is created or while it is executing. A
process is the unit of work in most systems. Systems consist of a collection of processes:
operating-system processes execute system code, and user processes execute user code. All
these processes may execute concurrently. Although traditionally a process contained only a
single thread of control as it ran, most modern operating systems now support processes that
have multiple threads. The operating system is responsible for several important aspects of
process and thread management: the creation and deletion of both user and system processes;
the scheduling of processes; and the provision of mechanisms for synchronization,
communication, and deadlock handling for processes.

PROCESSES

Firmer control and more compartmentalization of the various programs; and these
needs resulted in the notion of a process, which is a program in execution. A process is the
unit of work in a modern time-sharing system.

A batch system executes jobs, whereas a time-shared system has user programs, or
tasks. Even on a single-user system, a user may be able to run several programs at one time:
a word processor, a Web browser, and an e-mail package. And even if a user can execute
only one program at a time, such as on an embedded device that does not support
multitasking, the operating system may need to support its own internal programmed

activities, such as memory management.

In many respects, all these activities are similar, so we call all of them processes. The
terms job and process are used almost interchangeably in this text. Although we personally
prefer the term process, much of operating-system theory and terminology was developed
during a time when the major activity of operating systems was job processing. It would be
misleading to avoid the use of commonly accepted terms that include the word job (such as
job scheduling) simply because process has superseded job.

A process is a program in execution. A process is more than the program code, which
is sometimes known as the text section. It also includes the current activity, as represented by
the value of the program counter and the contents of the processor’s registers. A process
generally also includes the process stack, which contains temporary data (such as function
parameters, return addresses, and local variables), and a data section, which contains global
variables. A process may also include a heap, which is memory that is dynamically allocated

during process run time. The structure of a process in memory is shown in Figure 2.14.

max
stack

!

heap

data

text

0
Figure 2.14 Process in memory

PROCESS STATE
o Processes may be in one of 5 states, as shown in Figure 2.15 below.

o New - The process is in the stage of being created.

o Ready - The process has all the resources available that it needs to run, but the
CPU is not currently working on this process's instructions.

o Running - The CPU is working on this process's instructions.

o Waiting - The process cannot run at the moment, because it is waiting for
some resource to become available or for some event to occur. For example
the process may be waiting for keyboard input, disk access request, inter-

process messages, a timer to go off, or a child process to finish.

o Terminated - The process has completed.

admitted interrupt exit

terminated

scheduler dispatch

I/O or event completion I/O or event wait

Figure 2.15 - Diagram of process state
o The load average reported by the "w" command indicate the average number of
processes in the "Ready" state over the last 1, 5, and 15 minutes, i.e. processes who
have everything they need to run but cannot because the CPU is busy doing
something else.
e Some systems may have other states besides the ones listed here.
PROCESS CONTROL BLOCK

Each process is represented in the operating system by a Process Control Block
(PCB)—also called a task control block. A PCB is shown in Figure 2.16. It contains many
pieces of information associated with a specific process, including these:

* Process state. The state may be new, ready, running, and waiting, halted, and so on.

* Process ID, and parent process ID.

e Program counter. The counter indicates the address of the next instruction to be
executed for this process.

« CPU registers. The registers vary in number and type, depending on the computer
architecture. They include accumulators, index registers, stack pointers, and general-purpose
registers, plus any condition-code information. Along with the program counter, this state
information must be saved when an interrupt occurs, to allow the process to be continued
correctly afterward (Figure 2.17).

e CPU-scheduling information. This information includes a process priority,

pointers to scheduling queues, and any other scheduling parameters.

* Memory-management information. This information may include such items as
the value of the base and limit registers and the page tables, or the segment tables, depending

on the memory system used by the operating system.

process state
process number

program counter

registers

memory limits

list of open files

Figure 2.16 - Process control block (PCB)

process P, operating system, process P,

interrupt or system call
executing ﬂ?

TH | save state into PCB, |
- >idle
|re|oad state from PCB1| 1
ridle interrupt or system call executing

I . P

| save state into PCB, |

-idle

) |re|oad state from PCBol J
executing L[‘¥

Figure 2.17 Diagram showing CPU switch from process to process.
THREADS
The process model discussed so far has implied that a process is a program that

performs a single thread of execution. For example, when a process is running a word
processor program, a single thread of instructions is being executed. This single thread of

control allows the process to perform only one task at a time. The user cannot simultaneously

type in characters and run the spell checker within the same process, for example. Most
modern operating systems have extended the process concept to allow a process to have
multiple threads of execution and thus to perform more than one task at a time.

This feature is especially beneficial on multicore systems, where multiple threads can
run in parallel. On a system that supports threads, the PCB is expanded to include
information for each thread. Other changes throughout the system are also needed to support
threads.

PROCESS SCHEDULING

The objective of multiprogramming is to have some process running at all times, to
maximize CPU utilization. The objective of time sharing is to switch the CPU among
processes so frequently that users can interact with each program, while it is running. To
meet these objectives, the process scheduler selects an available process (possibly from a set
of several available processes) for program execution on the CPU. For a single-processor
system, there will never be more than one running process. If there are more processes, the
rest will have to wait until the CPU is free and can be rescheduled.

SCHEDULING QUEUES

As processes enter the system, they are put into a job queue, which consists of all
processes in the system. The processes that are residing in main memory and are ready and
waiting to execute are kept on a list called the ready queue. This queue is generally stored as
a linked list. A ready-queue header contains pointers to the first and final PCBs in the list.
Each PCB includes a pointer field that points to the next PCB in the ready queue. The system
also includes other queues.

When a process is allocated the CPU, it executes for a while and eventually quits, is
interrupted, or waits for the occurrence of a particular event, such as the completion of an 1/0
request. Suppose the process makes an 1/O request to a shared device, such as a disk. Since
there are many processes in the system, the disk may be busy with the 1/0 request of some
other process.

The process therefore may have to wait for the disk. The list of processes waiting for
a particular 1/0 device is called a device queue. Each device has its own device queue
(Figure 2.18).

queue header PCB;, PCB,

ready head > > =
queue tail registers registers
mag head =
tape -
unit 0 tail =
{nag head +———=
ape - PCB PCB PCB
unit 1 tail = 2 = 2
/ il |
disk head 1
unit 0 tail {
PCB;
terminal head . =
unit 0 o

Figure 2.18 The ready queue and various 1/O device queues.

A common representation of process scheduling is a queueing diagram, such as that in
Figure 2.19. Each rectangular box represents a queue. Two types of queues are present: the
ready queue and a set of device queues. The circles represent the resources that serve the
queues, and the arrows indicate the flow of processes in the system. A new process is initially
put in the ready queue. It waits there until it is selected for execution, or dispatched. Once the
process is allocated the CPU and is executing, one of several events could occur:
* The process could issue an I/O request and then be placed in an 1/O queue.
* The process could create a new child process and wait for the child’s termination.
* The process could be removed forcibly from the CPU, as a result of an interrupt, and be put

bac k in the read que ue.

t:] G, 0
ready queue l { CPU
| &

I/C'/<—(17O queue I-—' I/O request |-—

time slice
expired

/~ child fork a
_executes child

interrupt wait for an
occurs interrupt

Figure 2.19 Queueing-diagram representation of process scheduling.

SCHEDULERS

A process migrates among the various scheduling queues throughout its lifetime. The
operating system must select, for scheduling purposes, processes from these queues in some
fashion. The selection process is carried out by the appropriate scheduler. Often, in a batch
system, more processes are submitted than can be executed immediately. These processes are
spooled to a mass-storage device (typically a disk), where they are kept for later execution.
The long-term scheduler, or job scheduler, selects processes from this pool and loads them
into memory for execution. The short-term scheduler, or CPU scheduler, selects from among
the processes that are ready to execute and allocates the CPU to one of them.
Degree of multiprogramming - The long-term scheduler controls the degree of
multiprogramming (the number of processes in memory). If the degree of
multiprogramming is stable, then the average rate of process creation must be equal to the
average departure rate of processes leaving the system.
CPU-bound process — generates 1/O requests infrequently, using more of its time doing
computations.
1/0-bound process - is one that spends more of its time doing I/O than it spends doing
computations.
Medium-term scheduler is diagrammed in Figure 2.20. The key idea behind a medium-term
scheduler is that sometimes it can be advantageous to remove a process from memory (and

from active contention for the CPU) and thus reduce the degree of multiprogramming.

swap in partially executed 3 swap out
swapped-out processes

»| ready queue QU/I_ end
r /I/_O\ 1/0 waiting
k /’ queues

Figure 2.20 Addition of medium-term scheduling to the queueing diagram.
CONTEXT SWITCH

Switching the CPU to another process requires performing a state save of the current

process and a state restore of a different process. This task is known as a Context

When an interrupt occurs, the system needs to save the current context of the process
running on the CPU so that it can restore that context when its processing is done, essentially
suspending the process and then resuming it. The context is represented in the PCB of the

process.

OPERATIONS ON PROCESSES
PROCESS CREATION

o Processes may create other processes through appropriate system calls, such
as fork or spawn. The process which does the creating is termed the parent of the
other process, which is termed its child.

« Each process is given an integer identifier, termed its process identifier, or PID. The
parent PID (PPID) is also stored for each process.

o On typical UNIX systems the process scheduler is termed sched, and is given PID 0.
The first thing it does at system start up time is to launch init, which gives that
process PID 1. Init then launches all system daemons and user logins, and becomes
the ultimate parent of all other processes. Figure 2.21 shows a typical process tree for

a Linux system, and other systems will have similar though not identical trees:

login
pid = 8415

bash
pid = 8416

kthreadd sshd
pid = 2 pid = 3028

sshd
pid = 3610

oF tcsch
pid = 9298 PRd =003

o Depending on system implementation, a child process may receive some amount of

emacs
pid = 9204

Figure 2.21 - A tree of processes on a typical Linux system

shared resources with its parent. Child processes may or may not be limited to a

subset of the resources originally allocated to the parent, preventing runaway children
from consuming all of a certain system resource.
There are two options for the parent process after creating the child:

1. Wait for the child process to terminate before proceeding. The parent makes a
wait() system call, for either a specific child or for any child, which causes the
parent process to block until the wait() returns. UNIX shells normally wait for
their children to complete before issuing a new prompt.

2. Run concurrently with the child, continuing to process without waiting. This is
the operation seen when a UNIX shell runs a process as a background task. It
is also possible for the parent to run for a while, and then wait for the child
later, which might occur in a sort of a parallel processing operation.

Two possibilities for the address space of the child relative to the parent:

1. The child may be an exact duplicate of the parent, sharing the same program
and data segments in memory. Each will have their own PCB, including
program counter, registers, and PID. This is the behaviour of the fork system
call in UNIX.

2. The child process may have a new program loaded into its address space, with
all new code and data segments. This is the behaviour of the spawn system
calls in Windows. UNIX systems implement this as a second step, using
the exec system call.

Figures 2.22 and 2.23 below shows the fork and exec process on a UNIX system.
Note that the fork system call returns the PID of the processes child to each process -
It returns a zero to the child process and a non-zero child PID to the parent, so the
return value indicates which process is which. Process IDs can be looked up any time
for the current process or its direct parent using the getpid() and getppid() system

calls respectively.

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()

{

pid_t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL) ;

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL) ;
printf("Child Complete");

return 0;

}
Figure 2.22 Creating a separate process using the UNIX fork() system call.
Figure 2.23 shows the more complicated process for Windows, which must provide all of
the parameter information for the new process as part of the forking process.
PROCESS TERMINATION
o Processes may request their own termination by making the exit() system call,
typically returning an int. This int is passed along to the parent if it is doing a wait(),
and is typically zero on successful completion and some non-zero code in the event of
problems.
child code:
int exitCode;
exit(exitCode); // return exitCode; has the same effect when executed from main()
parent code:
pid_t pid,;
int status
pid = wait(&status);
/ pid indicates which child exited. Exit Code in low-order bits of status
/I macros can test the high-order bits of status for why it stopped
o Processes may also be terminated by the system for a variety of reasons, including:
o The inability of the system to deliver necessary system resources.
o Inresponse to a KILL command, or other unhandled process interrupt.

o A parent may kill its children if the task assigned to them is no longer needed.

(0]

If the parent exits, the system may or may not allow the child to continue
without a parent. (On UNIX systems, orphaned processes are generally
inherited by init, which then proceeds to kill them. The
UNIX nohup command allows a child to continue executing after its parent

has exited.)

When a process terminates, all of its system resources are freed up, open files flushed

and closed, etc. The process termination status and execution times are returned to the

parent if the parent is waiting for the child to terminate, or eventually returned to init

if the process becomes an orphan. (Processes which are trying to terminate but which

cannot because their parent is not waiting for them are termed zombies. These are

eventually inherited by init as orphans and killed off. Note that modern UNIX shells

do not produce as many orphans and zombies as older systems used to.)
INTERPROCESS COMMUNICATION

Independent Processes operating concurrently on a systems are those that can neither

affect other processes or be affected by other processes.

Cooperating Processes are those that can affect or be affected by other processes.

There are several reasons why cooperating processes are allowed:

o

Information Sharing - There may be several processes which need access to
the same file for example. (e.g. pipelines.)

Computation speedup - Often a solution to a problem can be solved faster if
the problem can be broken down into sub-tasks to be solved simultaneously

(particularly when multiple processors are involved.)

Modularity - The most efficient architecture may be to break a system down
into cooperating modules. (E.g. databases with a client-server architecture.)

Convenience - Even a single user may be multi-tasking, such as editing,

compiling, printing, and running the same code in different windows.

#include <stdio.h>
#include <windows.h>

int main (VOID)
STARTUPINFO si;
PROCESS_INFORMATION pi;

// allocate memory
ZeroMemory (&si, sizeof(si));
si.cb = sizeof(si);
ZeroMemory (&pi, sizeof (pi));

// create child process
if (!CreateProcess (NULL, // use command line
"C:\\WINDOWS\\system32\\mspaint.exe", // command line
NULL, // don’t inherit process handle
NULL, // don’'t inherit thread handle
FALSE, // disable handle inheritance
0, // no creation flags
NULL, // use parent’s environment block
NULL, // use parent’s existing directory
&si,
&pi))
{
fprintf (stderr, "Create Process Failed");
rerarn-=il;
}
// parent will wait for the child to complete
WaitForSingleObject (pi.hProcess, INFINITE) ;
printf ("Child Complete");

// close handles
CloseHandle (pi.hProcess) ;

CloseHandle (pi.hThread)

}
Figure 2.23 Creating a separate process using Win32 API
o Cooperating processes require some type of inter-process communication, which is
most commonly one of two types: Shared Memory systems or Message Passing

systems. Figure 2.24 illustrates the difference between the two systems:

process A p— |: process A

] process B shared memory :|
process B

message queue
—>mo|my|ma|mg] ... [mp e

kernel
kernel

(a) (b)

Figure 2.24 - Communications models: (a) Message passing. (b) Shared memory.

Shared Memory is faster once it is set up, because no system calls are required and
access occurs at normal memory speeds. However it is more complicated to set up,
and doesn't work as well across multiple computers. Shared memory is generally
preferable when large amounts of information must be shared quickly on the same

computer.

Message Passing requires system calls for every message transfer, and is therefore
slower, but it is simpler to set up and works well across multiple computers. Message
passing is generally preferable when the amount and/or frequency of data transfers is

small, or when multiple computers are involved.
Shared-Memory Systems

In general the memory to be shared in a shared-memory system is initially within the
address space of a particular process, which needs to make system calls in order to

make that memory publicly available to one or more other processes.

Other processes which wish to use the shared memory must then make their own

system calls to attach the shared memory area onto their address space.

Generally a few messages must be passed back and forth between the cooperating

processes first in order to set up and coordinate the shared memory access.

Producer-Consumer Example Using Shared Memory

This is a classic example, in which one process is producing data and another process
is consuming the data. The data is passed via an intermediary buffer, which may be either
unbounded or bounded. With a bounded buffer the producer may have to wait until there is
space available in the buffer, but with an unbounded buffer the producer will never need to

wait. The consumer may need to wait in either case until there is data available.

This example uses shared memory and a circular queue. Note in the code below that
only the producer changes "in", and only the consumer changes "out", and that they can never

be accessing the same array location at the same time.
First the following data is set up in the shared memory area:

#define BUFFER_SIZE 10
typedef struct {

} item;

item buffer] BUFFER_SIZE];

intin=0;

int out = 0;

« Then the producer process. Note that the buffer is full when "in" is one less than "out™ in

a circular sense:

item nextProduced,

while(true) {

/* Produce an item and store it in nextProduced */

nextProduced = makeNewltem(. . .);

/* Wait for space to become available */

while(((in+ 1) % BUFFER_SIZE) == out)
; I* Do nothing */

/* And then store the item and repeat the loop. */

buffer[in] = nextProduced;

in=(in+1) % BUFFER_SIZE;

e Then the consumer process. Note that the buffer is empty when "in" is equal to "out™:

item nextConsumed:;

while(true) {

/* Wait for an item to become available */

while(in == out)
; I* Do nothing */

/* Get the next available item */

nextConsumed = buffer[out];
out=(out+1) % BUFFER_SIZE;

/* Consume the item in nextConsumed

(Do something with it) */

MESSAGE-PASSING SYSTEMS

o Message passing systems must support at a minimum system calls for "send message”

and "receive message".

e A communication link must be established between the cooperating processes before

messages can be sent.

o There are three key issues to be resolved in message passing systems as further

explored in the next three subsections:

O
O
o

Naming

Direct or indirect communication (naming)
Synchronous or asynchronous communication

Automatic or explicit buffering.

o With direct communication the sender must know the name of the receiver to which

it wishes to send a message.

(e]

o

There is a one-to-one link between every sender-receiver pair.
For symmetric communication, the receiver must also know the specific name
of the sender from which it wishes to receive messages.

For asymmetric communications, this is not necessary.

e Indirect communication uses shared mailboxes, or ports.

(e]

Multiple processes can share the same mailbox or boxes.

o Only one process can read any given message in a mailbox. Initially the
process that creates the mailbox is the owner, and is the only one allowed to
read mail in the mailbox, although this privilege may be transferred.

o The OS must provide system calls to create and delete mailboxes, and to send
and receive messages to/from mailboxes.

SYNCHRONIZATION

Either the sending or receiving of messages (or neither or both) may be
either blocking or non-blocking. Blocking is considered synchronous Non-blocking
is considered asynchronous

Blocking send has the sender block until the message is received o Blocking receive
has the receiver block until a message is available.

Non-blocking send has the sender send the message and continue o Non-blocking
receive has the receiver receive a valid message or null

BUFFERING

Messages are passed via queues, which may have one of three capacity
configurations:

1. Zero capacity - Messages cannot be stored in the gqueue, so senders must
block until receivers accept the messages.

2. Bounded capacity- There is a certain pre-determined finite capacity in the
queue. Senders must block if the queue is full, until space becomes available
in the queue, but may be either blocking or non-blocking otherwise.

3. Unbounded capacity - The queue has a theoretical infinite capacity, so

senders are never forced to block.

message next_produced;

while (true) {
/* produce an item in next_produced */

send (next_produced) ;

Figure 2.25 The Producer Process using message passing

message next_consumed;

while (true) {
receive(next_consumed) ;

/* consume the item in next_consumed */

Figure 2.26 The Producer Process using message passing

COMMUNICATION IN CLIENT-SERVER SYSTEMS
SOCKETS

A socket is an endpoint for communication.

Two processes communicating over a network often use a pair of connected sockets
as a communication channel. Software that is designed for client-server operation may
also use sockets for communication between two processes running on the same
computer - For example the Ul for a database program may communicate with the
back-end database manager using sockets. (If the program were developed this way
from the beginning, it makes it very easy to port it from a single-computer system to a
networked application.)

A socket is identified by an IP address concatenated with a port number, e.g.
200.100.50.5:80.

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80)

Figure 2.27 communications using sockets

Port numbers below 1024 are considered to be well-known, and are generally reserved

for common Internet services. For example, telnet servers listen to port 23, ftp servers

to port 21, and web servers to port 80.

General purpose user sockets are assigned unused ports over 1024 by the operating

system in response to system calls such as socket() or soctkepair().

Communication channels via sockets may be of one of two major forms:

(¢]

Connection-oriented (TCP, Transmission Control Protocol) connections
emulate a telephone connection. All packets sent down the connection are
guaranteed to arrive in good condition at the other end, and to be delivered to
the receiving process in the order in which they were sent. The TCP layer of
the network protocol takes steps to verify all packets sent, re-send packets if
necessary, and arrange the received packets in the proper order before
delivering them to the receiving process. There is a certain amount of
overhead involved in this procedure, and if one packet is missing or delayed,
then any packets which follow will have to wait until the errant packet is
delivered before they can continue their journey.

Connectionless (UDP, User Datagram Protocol) emulate individual telegrams.
There is no guarantee that any particular packet will get through undamaged
(or at all), and no guarantee that the packets will get delivered in any particular
order. There may even be duplicate packets delivered, depending on how the
intermediary connections are configured. UDP transmissions are much faster
than TCP, but applications must implement their own error checking and

recovery procedures.

Sockets are considered a low-level communications channel, and processes may often

choose to use something at a higher level, such as those covered in the next two

sections.

THREAD

 Athread is a flow of execution through the process code, with its own program

counter, system registers and stack.

¢ A thread is also called a light weight process. Threads provide a way to improve

application performance through parallelism.

e Threads represent a software approach to improving performance of operating

system by reducing the overhead thread is equivalent to a classical process.

User Threads

code data files code data files
registers stack registers ||| registers |[| registers
stack stack stack
thread =——» <+ thread

single-threaded process

multithreaded process

2.28 Single threaded vs multithreaded process

e Thread management done by user-level threads library

e Three primary thread libraries:

o

O

o

POSIX Pthreads
Win32 threads
Java threads

Kernel Thread
e Supported by the Kernel Examples

o

o

o

Windows XP/2000
Solaris

Linux

Tru64 UNIX

Mac OS X

Process

Process is heavy weight or resource
intensive.

Process switching needs interaction with
operating system.

In multiple processing environments each
process executes the same code but has its
own memory and file resources.

If one process is blocked then no other
process can execute until the first process is
unblocked.

Multiple processes without using threads use
more resources.

In multiple processes each process operates
independently of the others.

Thread

Thread is light weight taking lesser
resources than a process.

Thread switching does not need to
interact with operating system.

All threads can share same set of
open files, child processes.

While one thread is blocked and
waiting, second thread in the same
task can run.

Multiple threaded processes use
fewer resources.

One thread can read, write or change
another thread's data.

Figure 2.29 Difference between Process and thread

THREAD SCHEDULING

e Distinction between user-level and kernel-level threads

e Many-to-one and many-to-many models, thread library schedules user-level threads to run
on LWP Known as process-contention scope (PCS) since scheduling competition is within
the process

o Kernel thread scheduled onto available CPU is system-contention scope (SCS) —
competition among all threads in system.

THREAD POOLS

e Create a number of threads in a pool where they await work

¢ Advantages:

o Usually slightly faster to service a request with an existing thread than create a new
thread

o Allows the number of threads in the application(s) to be bound to the size of the pool

TWO MARKS QUESTIONS WITH ANSWERS

1. What is an Operating system?
Ans: An operating system is a program that manages the computer hardware. It also
provides a basis for application programs and act as an intermediary between a user of
a computer and the computer hardware. It controls and coordinates the use of the
hardware among the various application programs for the various users.

2. What are the objectives of operating system?
Ans: An operating system is a program that manages the computer hardware, it act as
an intermediate between a user of a computer and the computer hardware. It controls
and coordinates the use of the hardware among the various application programs for
the various users.

3. What is the purpose of system programs/system calls?
Ans: System programs can be thought of as bundles of useful system calls. They
provide basic functionality to users so that users do not need to write their own
programs to solve common problems.

4. Defend timesharing differ from multiprogramming? If so, how?
Ans: Main difference between multiprogramming and time sharing is that
multiprogramming is the effective utilization of CPU time, by allowing several
programs to use the CPU at the same time but time sharing is the sharing of a
computing facility by several users that want to use the same facility at the same time.

5. Compare and contrast DMA and cache memory.
Ans: DMA(Direct Memory Access): Direct memory access (DMA) is a feature of
computer systems that allows certain hardware subsystems to access main memory
(Random-access memory), independent of the central processing unit (CPU). Cache
Memory: A cache is a smaller, faster memory, closer to a processor core, which stores
copies of the data from frequently used main memory locations. So, both DMA and
cache are used for increasing the speed of memory access.

6. What do you mean by system calls?
Ans: System calls provide the interface between a process and the operating system.
When a system call is executed, it is treated as by the hardware as software interrupt.

7. Define process.

10.

11.

12.

13.

14.

Ans: A process is a program in execution. It is an active entity and it includes the
process stack, containing temporary data and the data section contains global
variables.

What is process control block?

Ans: Each process is represented in the OS by a process control block. It contain
many pieces of information associated with a specific process.

What is meant by context switch?

Ans: Switching the CPU to another process requires saving the state of the old
process and loading the saved state for the new process. This task is known as context
switch.

Discuss the difference between symmetric and asymmetric multiprocessing

Ans: Symmetric multiprocessing (SMP), in which each processor runs an identical
copy of the operating system and these copies, communicate with one another as
needed. Asymmetric multiprocessing, in which each processor is assigned a specific
task. The master processor controls the system; the other processor looks the master.
What is the main advantage of multiprogramming?

Ans: Multiprogramming makes efficient use of the CPU by overlapping the demands
for the CPU and its I/0 devices from various users. It attempts to increase CPU
utilization by always having something for the CPU to execute.

Discuss the main advantages of layered approach to system design?

Ans: As in all cases of modular design, designing an operating system in a modular
way has several advantages. The system is easier to debug and modify because
changes affect only limited sections of the system rather than touching all sections of
the operating system. Information is kept only where it is needed and is accessible
only within a defined and restricted area, so any bugs affecting that data must be
limited to a specific module or layer.

Define inter process communication.

Ans: Inter process communication provides a mechanism to allow the co-operating
process to communicate with each other and synchronies their actions without sharing
the same address space. It is provided a message passing system.

What is bootstrap program?

Ans: A bootstrap is the program that initializes the operating system (OS) during
startup.
15. Summarize the functions of DMA.
Ans: Direct memory access (DMA) is a method that allows an input/output (I/0)
device to send or receive data directly to or from the main memory, bypassing the
CPU to speed up memory operations. The process is managed by a chip known as a
DMA controller (DMAC).
16. Define: Clustered systems.
Ans: A computer cluster is a set of loosely or tightly connected computers that work
together so that, in many respects, they can be viewed as a single system.
17. What is the Kernel?
Ans: A more common definition is that the OS is the one program running at all times
on the computer, usually called the kernel, with all else being application programs.
18. List the services provided by an Operating System?
Ans: * Program execution
*1/O Operation
* File-System manipulation
* Communications
* Error detection
19. What is meant by Batch Systems?
Ans: Operators batched together jobs with similar needs and ran through the
computer as a group .The operators would sort programs into batches with similar
requirements and as system become available, it would run each batch.
20. What is meant by Time-sharing Systems?
Ans: Time Sharing is a logical extension of multiprogramming .Here, CPU executes
multiple jobs by switching among them, but the switches occur so frequently that the
users can interact with each program while it is running.

5 MARK QUESTIONS

1. What are the various objectives and functions of Operating systems?
2. What are the major activities of an operating systems with regard to process
management?

3. Differentiate distributed systems from multiprocessor system?

4
5)
6.
.
8
9

Explain the basic instruction cycle with appropriate diagram?
Explain OS structure?

Briefly explain virtual machines?

Explain about multiprogramming and time sharing operating system?
Explain computer system architecture?

Explain about system calls?

10. What is OS user interface?
10 MARK QUESTIONS

o v Do

What is system calls in OS? Explain in detail with its types.

Discuss the Simple Operating System Structure. Describe the layered approach
What are different types of operating system? Explain them in detail

Explain User Operating-System Interface in detail

Explain operating system functions and services in detail

KEY TERMS

Application Programming Interface (API1)—Specification that allows applications
to request services from the kernel by making system calls.

Client—Process that requests a service from another process (a server). The machine
on which the client process runs is also called a client.

Degree of Multiprogramming—Number of programs a system can manage at a
time.

Efficient Operating System—operating system that exhibits high throughput and
small turnaround time.

Disk Scheduler—operating system component that determines the order in which
disk 1/0 requests are serviced to improve performance.

Distributed Computing—using multiple independent computers to perform a
common task.

Distributed Operating System—Single operating system that provides transparent

access to resources spread over multiple computers.

Graphical User Interface (GUI)—User-friendly point of access to an operating
system that uses graphical symbols such as windows, icons and menus to facilitate
program and file manipulation.

Interprocess Communication (IPC) manager—Operating system component that
governs communication between processes.

Kernel—Software that contains the core components of an operating system.
Layered Operating System—Modular operating system that places similar
components in isolated layers. Each layer accesses the services of the layer below and
returns results to the layer above.

Microkernel Operating System—Scalable operating system that puts a minimal
number of services in the kernel and requires user-level programs to implement
services generally delegated to the kernel in other types of operating systems.
Multiprogramming—Ability to store multiple programs in memory at once so that
they can be executed concurrently.

Process Scheduler—Operating system component that determines which process can
gain access to a processor and for how long.

Process—an executing program.

Processor-Bound—Process (or job) that consumes its quantum when executing.
These processes (or jobs) tend to be calculation intensive and issue few, if any, 1/0
requests.

System Call— Call from a user process that invokes a service of the kernel.
Thread—Entity that describes an independently executable stream of program
instructions (also called a thread of execution or thread of control). Threads facilitate
parallel execution of concurrent activities within a process.

Throughput—Amount of work performed per unit time.

Turnaround Time—Time it takes from the submission of a request until the system

returns the result.

UNIT 2. CPU SCHEDULING
INTRODUCTION

CPU scheduling is executed y operating system. Only one process can be acuire CPU
at a time of execution, another process will be on hold due to unavailability of resource. It is
the duty of operating system to make use of CPU utilization at the most in a multi

programmed environment. CPU scheduling is to make the system efficient, fast and fair.

Scheduling of this kind is a fundamental operating-system function. Almost all
computer resources are scheduled before use. The CPU is, of course, one of the primary

computer resources. Thus, its scheduling is central to operating-system design.

CPU Burst

1/0 Burst

CPU Burst

1/0 Burst

Figure: 2.1 Alternating sequence of CPU

In multiprogramming system, several processes are kept in memory at one time.
When one process has to wait, the operating system takes the CPU away from that process
and gives the CPU to another process. This sequence continues, every time one process has to
wait, another process can take over use of the CPU.

CPU SCHEDULER

Whenever the CPU becomes idle, the operating system must select one of the
processes in the ready queue to be executed. The selection process is carried out by the short-

term scheduler (or CPU scheduler). The scheduler selects from among the processes in
memory that are ready to execute, and allocates the CPU to one of them. Selection of process

by CPU follows the scheduling algorithm.
CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready

4. Terminates

Scheduling under 1 and 4 is non preemptive, All other scheduling is preemptive

N

Preemptive

When a process switches from running to a waiting state (due to unavailability of 1/0) or
terminates
Non preemptive

Once the resource allocated to a process, the process holds the CPU till it gets terminated or it
reaches a waiting state

J

SCHEDULING CRITERIA

There are many different criteria’s to check when considering the ""best" scheduling

algorithm, they are:
CPU Utilization

To make out the best use of CPU and not to waste any CPU cycle, CPU would be
working most of the time(ldeally 100% of the time). Considering a real system, CPU usage
should range from 40% (lightly loaded) to 90% (heavily loaded.)

Throughput

It is the total number of processes completed per unit time or rather say total amount
of work done in a unit of time. This may range from 10/second to 1/hour depending on the

specific processes.

urnaround Time

It is the amount of time taken to execute a particular process, i.e. The interval from

time of submission of the process to the time of completion of the process(Wall clock time).
Waiting Time

The sum of the periods spent waiting in the ready queue amount of time a process has
been waiting in the ready queue to acquire get control on the CPU.

Load Average

It is the average number of processes residing in the ready queue waiting for their turn
to get into the CPU.

Response Time

Amount of time it takes from when a request was submitted until the first response is
produced. Remember, it is the time till the first response and not the completion of process

execution (final response).

In general CPU utilization and Throughput are maximized and other factors are
reduced for proper optimization.

DISPATCHER

Another component involved in the CPU scheduling function is the Dispatcher. The
dispatcher is the module that gives control of the CPU to the process selected by the short-
term scheduler. This function involves:

o Switching context

o Switching to user mode

e Jumping to the proper location in the user program to restart that program from where

it left last time.

The dispatcher should be as fast as possible, given that it is invoked during every process
switch. The time taken by the dispatcher to stop one process and start another process is

known as the Dispatch Latency. Dispatch Latency can be explained using the below

event response to event

response interval

A

process made
interrupt available real-time process
| processing | execution

Y

dispatch latency

Y

A

conflicts dispatch

time

>
>

Figure: 2.2 Dispatch Latency
CPU SCHEDULING
FIRST COME FIRST SERVE
First Come First Serve (FCFS) scheduling algorithm simply schedules the jobs

according to their arrival time. The job which comes first in the ready queue will get the CPU
first. The lesser the arrival time of the job, the sooner will the job get the CPU. FCFS
scheduling may cause the problem of starvation if the burst time of the first process is the

longest among all the jobs.

o First Come First Serve is just like FIFO (First in First out) Queue data structure,
where the data element which is added to the queue first, is the one who leaves the
queue first.

e Thisis used in Batch Systems.

o It's easy to understand and implement programmatically, using a Queue data structure,
where a new process enters through the tail of the queue, and the scheduler selects
process from the head of the queue.

o A perfect real life example of FCFS scheduling is buying tickets at ticket counter.

Consider the processes P1, P2, P3, P4 given in the below table, arrives for execution in
the same order, with Arrival Time 0, and given Burst Time, let's find the average waiting

time using the FCFS scheduling algorithm.

PROCESS | BURST TIME
P1 21
P2 3
P3 6
P4 2
P1 P2 P3 P4
0 21 24 30 32

For the above given processes, first P1 will be provided with the CPU resources
« Hence, waiting time for P1 will be 0
o P1requires 21 ms for completion, hence waiting time for P2 will be 21 ms
o Similarly, waiting time for process P3 will be execution time of P1 + execution time
for P2, which will be (21 + 3) ms = 24 ms.

o For process P4 it will be the sum of execution times of P1, P2 and P3.

PROCESS | BURST TIME | WAITING TIIME
P1 21 0
P2 3 21
P3 6 24
P4 2 30

AVERAGE WAITING TIME = (0+21+24+30)/4 =18.75
ADVANTAGES
1. Suitable for batch system
2. FCFS is pretty simple and easy to implement.

3. Eventually, every process will get a chance to run, so starvation doesn't occur.

DISADVANTAGES

1. The scheduling method is non preemptive, the process will run to the completion.

2. Due to the non-preemptive nature of the algorithm, the problem of starvation may
occur.
3. Although it is easy to implement, but it is poor in performance since the average
waiting time is higher as compare to other scheduling algorithms.
IMLPEMENTATION IN C PROGRAM

#include<stdio.h>
int main ()
{
int n,bt[20],wt[20],tat[20],avwt=0,avtat=0,1,7;
printf ("Enter total number of processes (maximum 20) :");
scanf ("%d", &n) ;
printf ("\nEnter Process Burst Time\n");
for (1i=0;1i<n; i++)
{
printf ("P[%d]:",i+1);
scanf ("%d", &bt [i]);
}

wt [0]1=0; //waiting time for first process is O

//calculating waiting time
for (i=1;i<n;i++)
{
wt[1]1=0;
for (3=0; 3<i; j++)
wt[i]+=bt[]];
}
printf ("\nProcess\t\tBurst Time\tWaiting Time\tTurnaround
Time") ;
//calculating turnaround time
for (i=0;i<n; i++)
{
tat[i]l=bt[i]l+wt[i];
avwt+=wt [1];
avtat+=tat[i];
printf ("\nP[%d]\t\tsd\t\tsd\t\tsd",i+1,bt[i],wt[i],tat[i]);
}
avwt/=1;
avtat/=1i;
printf ("\n\nAverage Waiting Time:%d",avwt) ;
printf ("\nAverage Turnaround Time:%d",avtat);

return 0;}

OUTPUT
Enter total number of processes(maximum 20):4
Enter Process Burst Time

P[1]:21

P[2]:3

P[3]:6

P[4]:2

Process Burst Time Waiting Time Turnaround Time
P[1] 21 0 21

P[2] 3 21 24

P[3] 6 24 30

P[4] 2 30 32

Average Waiting Time:18.750000

CONVOY EFFECT

» Convoy Effect is a situation where many processes, who need to use a resource for short
time are blocked by one process holding that resource for a long time.

» This essentially leads to poor utilization of resources and hence poor performance.

SHORTEST JOB FIRST

A diverse approach to CPU scheduling is the technique of shortest-job-first (SJF)
scheduling algorithm which links with each process the length of the process's next CPU
burst. If the CPU is available, it is assigned to the process that has the minimum next CPU
burst. If the subsequent CPU bursts of two processes become the same, then FCFS scheduling

is used to break the tie.

» SJF scheduling algorithm, schedules the processes according to their burst time.

> In SJF scheduling, the process with the lowest burst time, among the list of
available processes in the ready queue, is going to be scheduled next.

» However, it is very difficult to predict the burst time needed for a process hence

this algorithm is very difficult to implement in the system.

In the following example, there are five jobs named as P1, P2, P3, P4 and P5. Their

arrival time and burst time are given in the table below.

PID | Arrival Time | Burst Time
1 0 7
2 3 3
3 4 2
4 7 10
5 9 8
P1 P3 P2 P5 P4
0 7 9 12 20 30

For the above given processes, first P1 will be provided with the CPU resources based on
Non preemptive scheduling

o Hence, waiting time for P1 will be 0

o P1 requires 7 ms for completion, CPU looks for the net process based on the lowest
burst time. Compare with P2, P3 and P4, P3 has the smallest burst time, so P3 will be
executed next.

o Similarly, Next will be P2, since it has the smallest burst time.

o Next will be P5 and at last P4.

Average Waiting Time=7.8

P1 P3| P1 | P2 P5 P4

0 4 6 9 12 20 30

For the above given processes, first P1 will be provided with the CPU resources based on
preemptive scheduling
e Hence, waiting time for P1 will be 0
o P1 requires 7 ms for completion, but P3 arrives CPU looks for the net process based
on the lowest burst time. Compare with P2, P3 and P4, P3 has the smallest burst time,
so P3 will be executed next.

« Similarly, Next will be P2, since it has the smallest burst time.

o Next will be P5 and at last PA4.

Advantages
» short processes are executed first and then followed by longer processes.
» The throughput is increased because more processes can be executed in less amount
of time.

Disadvantages:

o The time taken by a process must be known by the CPU beforehand, which is not
possible.

e Longer processes will have more waiting time, eventually they'll suffer starvation.
Sample program

#include<stdio.h>
void main ()
{
int bt[20],p[20],wt([20],tat[20],1,],n,total=0,pos, temp;
float avg wt,avg tat;
printf ("Enter number of process:");
scanf ("%d", &n) ;

printf ("\nEnter Burst Time:\n");
for (i=0;1i<n; i++)
{
printf ("psd:",i+1);
scanf ("%d", &bt [i]);
plil=i+1; //contains process number
}
//sorting burst time in ascending order using selection
sort
for (i=0;1i<n; i++)
{
pos=i;
for (J=1i+1;j<n; j++)
{
if (bt [j]<bt[pos])
pPos=7j;
}

temp=bt[i];
bt[i]l=bt[pos];
bt [pos]=temp;

temp=p[i];
plil=plpos];

plpos]=temp;
}
wt[0]=0; //waiting time for first process will be zero
//calculate waiting time
for (i=1;i<n;i++)
{
wt[1]=0;
for (J=0;3<i;j++)
wt[1]+=bt[]J];

total+=wt[i];
}

avg wt=(float)total/n; //average waiting time
total=0;
printf ("\nProcess\t Burst Time \tWaiting

Time\tTurnaround Time");
for (i=0;1i<n; i++)

{

tat[i]=bt[i]+wt[1]; //calculate turnaround time
total+=tat[i];
printf ("\npsd\t\t 3d\t\t sd\t\t\tsd",p[i],bt[i],wt

[1],tat[i]);
}
avg_tat=(float)total/n; //average turnaround time
printf ("\n\nAverage Waiting Time=%f",avg wt);
printf ("\nAverage Turnaround Time=%f\n",avg tat);
}
Output
Enter number of process:5

Enter Burst Time:

pl:7

p2:3

p3:2

p4:10

p5:8

Process Burst Time Waiting Time Turnaround Time
p3 2 0 2
p2 3 2 5
pl 7 5 12
p5 8 12 20
p4 10 20 30

Average Waiting Time=7.800000
Average Turnaround Time=13.800000

ROUND-ROBIN

The round-robin (RR) scheduling technique is intended mainly for time-sharing
systems. This algorithm is related to FCFS scheduling, but pre-emption is included to toggle
among processes. A small unit of time which is termed as a time quantum or time slice has to
be defined. A 'time quantum' is usually from 10 to 100 milliseconds. The ready queue gets
treated with a circular queue. The CPU scheduler goes about the ready queue, allocating the
CPU with each process for the time interval which is at least 1-time quantum.

« A fixed time is allotted to each process, called quantum, for execution.

o Once a process is executed for given time period that process is preempted and other
process executes for given time period.

o Context switching is used to save states of preempted processes.

o If time quantum is very large than RR scheduling algorithm treat as FCFS and if time
quantum is small than RR called processor sharing. Processor sharing show to each
process that they have their own processor.

o The central concept is time switching in RR scheduling. If the context switch time is
10 percent of the time quantum then about 10 percent time will be spent in context
switching.

« The ready queue is maintained as a circular queue, so when all processes have had a
turn, then the scheduler gives the first process another turn, and so on.

Advantages

1. It can be actually implementable in the system because it is not depending on the
burst time.

2. It doesn't suffer from the problem of starvation or convoy effect.

3. All the jobs get a fare allocation of CPU.

Disadvantages
1. The higher the time quantum, the higher the response time in the system.

2. The lower the time quantum, the higher the context switching overhead in the system.

3. Deciding a perfect time quantum is really a very difficult task in the system.

PROCESS | ARRIVAL TIME | BURST TIME

P1 0 24
P2 1 3
P3 2 3

o The performance of RR is sensitive to the time quantum selected. If the quantum is
large enough, then RR reduces to the FCFS algorithm; If it is very small, then each
process gets 1/nth of the processor time and share the CPU equally.

« But, a real system invokes overhead for every context switch, and the smaller the time
quantum the more context switches. Most modern systems use time quantum between
10 and 100 milliseconds, and context switch times on the order of 10 microseconds,
so the overhead is small relative to the time quantum.

o Here we taken Time Quantum =4

P1 | P2 | P3 P1| P1| P1| P1| P1

#include<stdio.h>
int main ()
{
int count,j,n,time, remain, flag=0, time quantum;
int wait time=0, turnaround time=0,at[10],bt[10],rt[10];
printf ("Enter Total Process:\t ");
scanf ("%d", &n) ;
remain=n;
for (count=0; count<n; count++)
{

printf ("Enter Arrival Time and Burst Time for Process
Process Number %d :",count+l);

scanf ("%d", &at[count]) ;

scanf ("%d", &bt [count]) ;

rt[count]=bt[count];
}
printf ("Enter Time Quantum:\t");
scanf ("%d", &time gquantum) ;
printf ("\n\nProcess\t|Turnaround Time|Waiting Time\n\n");
for (time=0, count=0; remain!=0;)
{
if(rt[count]<=time quantum && rtlcount]>0)
{
time+=rt[count];
rt[count]=0;
flag=1l;
}
else if(rt[count]>0)
{
rt[count]-=time quantum;
timet+=time gquantum;
}
if(rt[count]==0 && flag==1)
{
remain--;

printf ("P[%A]I\t[\tsd\t|\t%d\n", count+1, time-
at[count],time-at[count]-bt[count]);

wait time+=time-at[count]-bt[count];
turnaround time+=time-at[count];
flag=0;

}

if (count==n-1)
count=0;

else if (at[count+l]<=time)

count++;

else
count=0;
}
printf ("\nAverage Waiting Time= $f\n",wait time*1.0/n);
printf ("Avg Turnaround Time = %f",turnaround time*1.0/n);

return 0;
}
OUTPUT

Enter Total Process: 3

Enter Arrival Time and Burst Time for Process Process Number 1 :1
24

Enter Arrival Time and Burst Time for Process Process Number 2 :2
3

Enter Arrival Time and Burst Time for Process Process Number 3 :3
3

Enter Time Quantum: 4

Process Turnaround Time Waiting Time

P[2] 5 2
P[3] 7 4
P[1] 29 5

Average Waiting Time= 3.666667

PRIORITY SCHEDULING

Scheduler consider the priority of processes. The priority assigned to each process and

CPU allocated to highest priority process. Equal priority processes scheduled in FCFS order.

Priority can be discussed regarding Lower and higher priority. Numbers denote it. We
can use 0 for lower priority as well as more top priority. There is not a hard and fast rule to

assign numbers to preferences.

Priority Scheduling suffers from a starvation problem. The starvation problem leads to
indefinite blocking of a process due to low priority. Every time higher priority process
acquires CPU, and Low priority process is still waiting in the waiting queue. The aging
technique gives us a solution to overcome this starvation problem in this technique; we

increased the priority of process that was waiting in the system for a long time.
Advantages
o The priority of a process can be selected based on memory requirement, time
requirement or user preference. For example, a high end game will have better
graphics, that means the process which updates the screen in a game will have higher
priority so as to achieve better graphics performance.
Disadvantages:
o A second scheduling algorithm is required to schedule the processes which have same
priority.
o In preemptive priority scheduling, a higher priority process can execute ahead of an
already executing lower priority process. If lower priority process keeps waiting for

higher priority processes, starvation occurs.

Now in this example, we are using low numbers to represent higher priority.

PROCESS | BURST TIME | PRIORITY
P1 10 4
P2 4 1
P3 6 3
P4 5 2

Average waiting time= (0+4+9+15) /4=28/4=7
Average time is 7 milliseconds.

#include<stdio.h>

int main ()

{

int
bt[20],p[20],wt[20],tat[20],pr[20],1,]J,n,total=0,pos, temp,avg
wt,avg tat;

printf ("Enter Total Number of Process:");

scanf ("%d", &n) ;

printf ("\nEnter Burst Time and Priority\n");
for (1i=0;1i<n; i++)
{

printf ("\nP[%d]\n",i+1);

printf ("Burst Time:");

scanf ("%d", &bt [i]);

printf ("Priority:");

scanf ("%d", &pr[i]);

plil=i+1; //contains process number
}
//sorting burst time, priority and process number in

ascending order using selection sort

for (i=0;i<n;i++)
{

pos=i;

for (j=i+1;j<n;j++)

{

if (pr[j]<prlpos])
pos=j;

}

temp=pr[i];

pr[i]=pr[pos];

prlpos]=temp;

temp=bt[i];
bt[i]l=bt[pos];
bt [pos]=temp;

temp=p[i];
plil=p[pos];
p[pos]=temp;
}
wt [0]1=0; //waiting time for first process is zero

//calculate waiting time
for (i=1;i<n;i++)
{
wt[1]1=0;
for (3=0;3<i;j++)
wt[1]+=bt[j];

total+=wt[i];
}

avg wt=total/n; //average waiting time
total=0;
printf ("\nProcess\t Burst Time \tWaiting

Time\tTurnaround Time") ;
for (i=0;i<n;i++)
{
tat[i]=bt[i]+wt[i]; //calculate turnaround time
total+= tat[l]
prlntf("\nP[%
SANt\t\t%d",p[i],bt[1

}

d]\t\t Sd\t\t
l,wt[i],tat([1]);

avg tat=total/n; //average turnaround time
printf ("\n\nAverage Waiting Time=%d",avg wt);
printf ("\nAverage Turnaround Time=%d\n",avg tat);

return 0;

}
OUTPUT

Enter Total Number of Process:4
Enter Burst Time and Priority

P[1]
Burst Time:10
Priority:4

P[2]
Burst Time:4
Priority:1

P[3]
Burst Time:6
Priority:3

P[4]
Burst Time:5
Priority:2

Process Burst Time Waiting Time Turnaround Time
P[2] 4 0 4

P[4] 5 4 9

P[3] 6 9 15

P[1] 10 15 25

Average Waiting Time=7
Average Turnaround Time=13
MULTILEVEL QUEUE SCHEDULING

This Scheduling algorithm has been created for situations in which processes are
easily classified into different groups.

1. System Processes

2. Interactive Processes

3. Interactive Editing Processes

4. Batch Processes

5. Student Processes

For example: A common division is made between foreground(or interactive) processes
and background (or batch) processes. These two types of processes have different response-
time requirements, and so might have different scheduling needs. In addition, foreground
processes may have priority over background processes.

A multi-level queue scheduling algorithm partitions the ready queue into several separate
queues. The processes are permanently assigned to one queue, generally based on some
property of the process, such as memory size, process priority, or process type. Each queue
has its own scheduling algorithm.

For example: separate queues might be used for foreground and background processes.
The foreground queue might be scheduled by Round Robin algorithm, while the background
queue is scheduled by an FCFS algorithm.

In addition, there must be scheduling among the queues, which is commonly
implemented as fixed-priority preemptive scheduling. For example: The foreground queue
may have absolute priority over the background queue.

Each queue has absolute priority over lower-priority queues. No process in the batch
queue, for example, could run unless the queues for system processes, interactive processes,
and interactive editing processes were all empty. If an interactive editing process entered the
ready queue while a batch process was running, the batch process will be preempted.

Highest priority

system processes

interactive processes

interactive editing processes

—> student processes

|

Lowest priority
Figure: 2.3 Multi level scheduling
MULTILEVEL FEEDBACK QUEUE SCHEDULING

In a multilevel queue-scheduling algorithm, processes are permanently assigned to a
queue on entry to the system. Processes do not move between queues. This setup has the

advantage of low scheduling overhead, but the disadvantage of being inflexible.

Multilevel feedback queue scheduling, however, allows a process to move between
queues. The idea is to separate processes with different CPU-burst characteristics. If a
process uses too much CPU time, it will be moved to a lower-priority queue. Similarly, a
process that waits too long in a lower-priority queue may be moved to a higher-priority

queue. This form of aging prevents starvation.

- E
T

Figure: 2.4 Multi level queue scheduling

An example of a multilevel feedback queue can be seen in the below figure.

In general, a multilevel feedback queue scheduler is defined by the following parameters:

e The number of queues.

o The scheduling algorithm for each queue.

e The method used to determine when to upgrade a process to a higher-priority queue.
e The method used to determine when to demote a process to a lower-priority queue.
e The method used to determine which queue a process will enter when that process

needs service.

The definition of a multilevel feedback queue scheduler makes it the most general CPU-
scheduling algorithm. It can be configured to match a specific system under design.
Unfortunately, it also requires some means of selecting values for all the parameters to define
the best scheduler. Although a multilevel feedback queue is the most general scheme, it is

also the most complex.

DEADLOCK
INTRODUCTION

In a multiprogramming system, numerous processes get competed for a finite number of
resources. Any process requests resources, and as the resources aren't available at that time,
the process goes into a waiting state. At times, a waiting process is not at all able again to
change its state as other waiting processes detain the resources it has requested. That
condition is termed as deadlock. Every process needs some resources to complete its
execution. However, the resource is granted in a sequential order.

1. The process requests for some resource.

2. OS grant the resource if it is available otherwise let the process waits.

3. The process uses it and release on the completion.
A Deadlock is a situation where each of the computer process waits for a resource which is
being assigned to some another process. In this situation, none of the process gets executed
since the resource it needs, is held by some other process which is also waiting for some other
resource to be released.
Let us assume that there are three processes P1, P2 and P3. There are three different resources
R1, R2 and R3. R1 is assigned to P1, R2 is assigned to P2 and R3 is assigned to P3.

h 4

R1 R2 R3

Figure: 2.5 Deadlock Example

Definition: A deadlock happens in operating system when two or more processes
need some resource to complete their execution that is held by the other process.

A system model or structure consists of a fixed number of resources to be circulated among
some opposing processes. The resources are then partitioned into numerous types, each
consisting of some specific quantity of identical instances. Memory space, CPU cycles,
directories and files, 1/O devices like keyboards, printers and CD-DVD drives are prime
examples of resource types. When a system has 2 CPUs, then the resource type CPU got two
instances.

Under the standard mode of operation, any process may use a resource in only the below-
mentioned sequence:

1 Request: When the request can't be approved immediately (where the case may be when
another process is utilizing the resource), then the requesting job must remain waited until it
can obtain the resource.

2. Use: The process can run on the resource (like when the resource is a printer, its job/process
IS to print on the printer).

3. Release: The process releases the resource (like, terminating or exiting any specific
process).

2.6.1 REAL TIME EXAMPLES OF DEADLOCK

If a process is given the task of waiting for an event to occur, and if the system includes no
provision for signaling that event, then we have a one process deadlock. Several common
examples of deadlock are

A Traffic Deadlock:

A number of automobiles are attempting to drive through a busy section of the city, but the
traffic has become completely jammed. Traffic comes to a halt, and it is necessary for the
police to unwind the jam by slowly and carefully backing cars out of the area. Eventually the
traffic begins to flow normally, but not without much annoyance, effort and the loss of

considerable time.

EIT D &I 10 @ e

]
@

AT DAL ST) G-

- - - [T (T (T8 (05 [

([TB ([B (CIRIT (5 [H

Figure: 2.6 Traffic Jam

B. A simple resource deadlock:

A simple examples of a resource deadlock is illustrated

Rewousce 115 allocatedto Process B s allocatedto
Process A N Proces: B
<

Proodss A o Process B I

7 ™
—*{Resource)
|
Process A is requesting \ 2 / Resource 2 15 allocatedto
Resource 2 DT Process B

Figure: 2.7 Resource Deadlock

This resource allocation graph shows two processes as rectangles and two resources as
circles. An arrow from a resource to a process indicates that the resource belongs to, or has
been allocated to the process. An arrow from a process to a resource indicates that the process

is requesting, but has not yet been allocated, the resource. The diagram illustrates a

deadlocked system: process A holds Resource 1 and needs Resource 2 to continue. Process B
holds Resource 2 and needs Resource 1 to continue. Each process is waiting for the other to
free a resource that it will not free until the other frees its resources that it will not do until the
other from its resources , etc. This circular wait is characterized of deadlock systems.

C. Deadlock in spooling systems:

Spooling systems are often prone to deadlock. A spooling system is used to improve system
throughput by disassociating a program from the slow operating speeds of devices such as
printers. For example, if a program sending lines to the printer must wait for each line to be
printed before it can transmit the next line, then the program will execute slowly. To speed
the program’s executing, output lines are routed to a much faster device such as a disk drive
where they are temporarily stored until they may be printed. In some spooling systems, the
complete output from a program must be available before actual printing can begin. Thus
several partially complete jobs generating print lines to a spool file could become deadlocked
if the available space fills before any job completes. Unwinding or recovering from such a
deadlock might involve restarting the system with a loss of all work performed so far.
SIMPLE REVIEW

1. Assuming that there are no cars beyond the ellipses in Fig. 2.3, what minimum
number of cars would have to back up to relieve the deadlock and which car(s)
would they be?

In Fig. 2.3, only two cars would need to back up to allow every other car to eventually
Move any one of the cars abutting an ellipsis, then the car ahead of that one in the
intersection.

2. If cars could be removed by airlifting in Fig. 2.3, what minimum number of cars,
and which one(s), would have to be removed to relieve the deadlock?

Only one car has to be removed—namely, any one of the four cars in the

intersections.
DEADLOCK CHARACTERIZATION

NECESSARY CONDITIONS FOR DEADLOCKS

A deadlock occurs if the four conditions hold true. But these conditions are not mutually
exclusive.

The Coffman conditions are given as follows:

e Mutual Exclusion

There should be a resource that can only be held by one process at a time. In the

diagram below, there is a single instance of Resource 1 and it is held by Process 1
only.

Allocated

Process 1 Resource 1

Figure: 2.8 Mutual Exclusion
Hold and Wait

A process can hold multiple resources and still request more resources from other

processes which are holding them. In the diagram given below, Process 2 holds

Resource 2 and Resource 3 and is requesting the Resource 1 which is held by
Process 1.

Allocated

Resource 2

Allocated

Request

Resource 1 Process 2

Allocated Resource 3

Figure: 2.9 Hold and Wait

No Preemption

A resource cannot be preempted from a process by force. A process can only release
a resource voluntarily. In the diagram below, Process 2 cannot preempt Resource 1

from Process 1. It will only be released when Process 1 relinquishes it voluntarily
after its execution is complete.

Allocated

Request Allocated
Process 1 Resource 1 e

Process 2 Resource 2

Figure: 2.10 No Preemption
e Circular Wait
A process is waiting for the resource held by the second process, which is waiting for
the resource held by the third process and so on, till the last process is waiting for a
resource held by the first process. This forms a circular chain. For example: Process
1 is allocated Resource2 and it is requesting Resource 1. Similarly, Process 2 is

allocated Resource 1 and it is requesting Resource 2. This forms a circular wait loop.

Request Allocated

Resource 1 Resource 2

Allocated

Figure: 2.11 Circular Wait

RESOURCE - ALLOCATION GRAPH

Definition: A resource allocation graph tracks which resource is held by which
process and which process is waiting for a resource of a particular type. It is very
powerful and simple tool to illustrate how interacting processes can deadlock.

The resource allocation graph is the pictorial representation of the state of a system. As its
name suggests, the resource allocation graph is the complete information about all the
processes which are holding some resources or waiting for some resources.
It also contains the information about all the instances of all the resources whether they are
available or being used by the processes.
In Resource allocation graph, the process is represented by a Circle while the Resource is
represented by a rectangle.
In RAG vertices are two types —
1. Process vertex — Every process will be represented as a process vertex. Generally, the
process will be represented with a circle.
2. Resource vertex — Every resource will be represented as a resource vertex. It is also
two types —

« Single instance type resource — It represents as a box, inside the box, there will be one
dot. So the number of dots indicates how many instances are present of each resource
type.

« Multi-resource instance type resource — It also represents as a box, inside the box, there
will be many dots present.

Vertices
Y Y
Process Vertex Resources Vertex
Y Y
Single Instance Multiple Instance
| H E N
Eg. CPU Eg. Registers

Figure: 2.12 Process and Resources
Vertices are mainly of two types, Resource and process. Each of them will be represented by

a different shape. Circle represents process while rectangle represents resource.

A resource can have more than one instance. Each instance will be represented by a dot

inside the rectangle.

Edges

v v

Assign edge Request edge

Ri | R

Figure: 2.13 Edges

Edges in RAG are also of two types, one represents assignment and other represents the wait

of a process for a resource. The above image shows each of them.
A resource is shown as assigned to a process if the tail of the arrow is attached to an instance

to the resource and the head is attached to a process.

A process is shown as waiting for a resource if the tail of an arrow is attached to the process

while the head is pointing towards the resource.

Resource Resource

Process is requesting Resource is assigned
for a resource to process

Figure: 2.14 Resource to process Allocation

Example
Let's consider 3 processes P1, P2 and P3, and two types of resources R1 and R2. The

resources are having 1 instance each.
According to the graph, R1 is being used by P1, P2 is holding R2 and waiting for R1, P3 is

waiting for R1 as well as R2.
The graph is deadlock free since no cycle is being formed in the graph.

5 %

R1 R2

Figure: 2.15 Resource Allocation Graph

If a cycle is being formed in a Resource allocation graph where all the resources have the
single instance then the system is deadlocked.

In Case of Resource allocation graph with multi-instanced resource types, Cycle is a
necessary condition of deadlock but not the sufficient condition.

The following example contains three processes P1, P2, P3 and three resources R2, R2, R3.

All the resources are having single instances each.

@

R1 R2 R3
Figure: 2.16 Resource Allocation Graph with Deadlock

S

Figure: 2.17 Resource Allocation Graph with a cycle but no Deadlock
METHODS FOR HANDLING DEADLOCK
Generally speaking there are three ways of handling deadlocks:

« Deadlock prevention or avoidance - Do not allow the system to get into a deadlocked
state.

o Deadlock detection and recovery - Abort a process or preempt some resources when
deadlocks are detected.

« Ignore the problem all together - If deadlocks only occur once a year or so, it may be
better to simply let them happen and reboot as necessary than to incur the constant
overhead and system performance penalties associated with deadlock prevention or
detection. This is the approach that both Windows and UNIX take.

In order to avoid deadlocks, the system must have additional information about all processes.
In particular, the system must know what resources a process will or may request in the
future. (Ranging from a simple worst-case maximum to a complete resource request and
release plan for each process, depending on the particular algorithm.)

Deadlock detection is fairly straightforward, but deadlock recovery requires either aborting
processes or preempting resources, neither of which is an attractive alternative.

If deadlocks are neither prevented nor detected, then when a deadlock occurs the system will

gradually slow down, as more and more processes become stuck waiting for resources

currently held by the deadlock and by other waiting processes. Unfortunately this slowdown
can be indistinguishable from a general system slowdown when a real-time process has heavy
computing needs.

DEADLOCK PREVENTION

Deadlocks can be prevented by preventing at least one of the four required conditions:
Mutual Exclusion
o Shared resources such as read-only files do not lead to deadlocks.
« Unfortunately some resources, such as printers and tape drives, require exclusive
access by a single process.
Hold and Wait
e To prevent this condition processes must be prevented from holding one or more
resources while simultaneously waiting for one or more others. There are several
possibilities for this:

o Require that all processes request all resources at one time. This can be
wasteful of system resources if a process needs one resource early in its
execution and doesn't need some other resource until much later.

o Require that processes holding resources must release them before requesting
new resources, and then re-acquire the released resources along with the new
ones in a single new request. This can be a problem if a process has partially
completed an operation using a resource and then fails to get it re-allocated
after releasing it.

o Either of the methods described above can lead to starvation if a process
requires one or more popular resources.

No Preemption
« Preemption of process resource allocations can prevent this condition of deadlocks,
when it is possible.

o One approach is that if a process is forced to wait when requesting a new
resource, then all other resources previously held by this process are implicitly
released, (preempted), forcing this process to re-acquire the old resources
along with the new resources in a single request, similar to the previous

discussion.

o Another approach is that when a resource is requested and not available, then
the system looks to see what other processes currently have those
resources and are themselves blocked waiting for some other resource. If such
a process is found, then some of their resources may get preempted and added
to the list of resources for which the process is waiting.

o Either of these approaches may be applicable for resources whose states are
easily saved and restored, such as registers and memory, but are generally not

applicable to other devices such as printers and tape drives.

Circular Wait

One way to avoid circular wait is to number all resources, and to require that
processes request resources only in strictly increasing (or decreasing) order.

In other words, in order to request resource Rj, a process must first release all Ri such
that i >=j.

One big challenge in this scheme is determining the relative ordering of the different

resources
DEADLOCK AVOIDANCE

The general idea behind deadlock avoidance is to prevent deadlocks from ever
happening, by preventing at least one of the aforementioned conditions.

This requires more information about each process, AND tends to lead to low device
utilization. (i.e. it is a conservative approach.)

In some algorithms the scheduler only needs to know the maximum number of each
resource that a process might potentially use. In more complex algorithms the
scheduler can also take advantage of the schedule of exactly what resources may be
needed in what order.

When a scheduler sees that starting a process or granting resource requests may lead
to future deadlocks, then that process is just not started or the request is not granted.

A resource allocation state is defined by the number of available and allocated
resources and the maximum requirements of all processes in the system.

Safe State

A state is safe if the system can allocate all resources requested by all processes (up to

their stated maximums) without entering a deadlock state.

o More formally, a state is safe if there exists a safe sequence of processes {P0, P1, P2,
..., Pn } such that all of the resource requests for Pi can be granted using the resources
currently allocated to Pi and all processes Pj where j < i. (i.e. if all the processes prior
to Pi finish and free up their resources, then Pi will be able to finish also, using the
resources that they have freed up.)

o |If a safe sequence does not exist, then the system is in an unsafe state,
which MAY lead to deadlock. (All safe states are deadlock free, but not all unsafe

states lead to deadlocks.)

unsafe
deadlock

/

Figure 2.18 - Safe, unsafe, and deadlocked state spaces.
« For example, consider a system with 12 tape drives, allocated as follows. Is this a safe

state? What is the safe sequence?

Maximum Needs | Current Allocation

PO 10 5
P1 |4 2
P2 9 2

« What happens to the above table if process P2 requests and is granted one more tape
drive?
o Key to the safe state approach is that when a request is made for resources, the request

is granted only if the resulting allocation state is a safe one.

Resource-Allocation Graph Algorithm

If resource categories have only single instances of their resources, then deadlock
states can be detected by cycles in the resource-allocation graphs.

In this case, unsafe states can be recognized and avoided by augmenting the resource-
allocation graph with claim edges, noted by dashed lines, which point from a process
to a resource that it may request in the future.

In order for this technique to work, all claim edges must be added to the graph for any
particular process before that process is allowed to request any resources.
(Alternatively, processes may only make requests for resources for which they have
already established claim edges, and claim edges cannot be added to any process that
is currently holding resources.)

When a process makes a request, the claim edge Pi->Rj is converted to a request edge.
Similarly when a resource is released, the assignment reverts back to a claim edge.
This approach works by denying requests that would produce cycles in the resource-
allocation graph, taking claim edges into effect.

Consider for example what happens when process P2 requests resource R2:

R,

Figure 2.19 - Resource allocation graph for deadlock avoidance
The resulting resource-allocation graph would have a cycle in it, and so the request

cannot be granted.

Figure 2.20 - An unsafe state in a resource allocation graph
Banker's Algorithm
For resource categories that contain more than one instance the resource-allocation
graph method does not work, and more complex (and less efficient) methods must be
chosen.
The Banker's Algorithm gets its name because it is a method that bankers could use to
assure that when they lend out resources they will still be able to satisfy all their
clients. (A banker won't loan out a little money to start building a house unless they
are assured that they will later be able to loan out the rest of the money to finish the
house.)
When a process starts up, it must state in advance the maximum allocation of
resources it may request, up to the amount available on the system.
When a request is made, the scheduler determines whether granting the request would
leave the system in a safe state. If not, then the process must wait until the request can
be granted safely.
The banker's algorithm relies on several key data structures: (where n is the number of
processes and m is the number of resource categories.)
o Available[m] indicates how many resources are currently available of each
type.
o Max[n][m] indicates the maximum demand of each process of each resource.
o Allocation[n][m] indicates the number of each resource category allocated to
each process.
o Need[n][m] indicates the remaining resources needed of each type for each
process. (Note that Need[i][j]=Max[i][j]- Allocation[i][]j] foralli,j.)

For simplification of discussions, we make the following notations / observations:

o One row of the Need vector, Need[i], can be treated as a vector corresponding
to the needs of process i, and similarly for Allocation and Max.

o A vector X is considered to be <= avector Y if X[i]<=Y[i]foralli.

Safety Algorithm
In order to apply the Banker's algorithm, we first need an algorithm for determining
whether or not a particular state is safe.
This algorithm determines if the current state of a system is safe, according to the
following steps:

1. Let Work and Finish be vectors of length m and n respectively.

= Work is a working copy of the available resources, which will be
modified during the analysis.

= Finish is a vector of booleans indicating whether a particular process
can finish. (or has finished so far in the analysis.)

= Initialize Work to Available, and Finish to false for all elements.

2. Find an i such that both (A) Finish[i] == false, and (B) Need[i] < Work.
This process has not finished, but could with the given available working set.
If no such i exists, go to step 4.

3. Set Work = Work + Allocation[i], and set Finish[i] to true. This corresponds
to process i finishing up and releasing its resources back into the work pool.
Then loop back to step 2.

4. If finish[i] == true for all i, then the state is a safe state, because a safe
sequence has been found.

(JTB's Modification:

1 In step 1. instead of making Finish an array of booleans initialized to false,
make it an array of ints initialized to 0. Also initialize an int s = 0 as a step
counter.

2. Instep 2, look for Finish[i] == 0.

In step 3, set Finish[i] to ++s. S is counting the number of finished processes.

4. For step 4, the test can be either Finish[i] > 0 for all i, or s >= n. The benefit
of this method is that if a safe state exists, then Finish[] indicates one safe

sequence (of possibly many.))

Resource-Request Algorithm (The Bankers Algorithm)

« Now that we have a tool for determining if a particular state is safe or not, we are now
ready to look at the Banker's algorithm itself.

« This algorithm determines if a new request is safe, and grants it only if it is safe to do
SO.

e When a request is made (that does not exceed currently available resources), pretend
it has been granted, and then see if the resulting state is a safe one. If so, grant the
request, and if not, deny the request, as follows:

1. Let Request[n][m] indicate the number of resources of each type currently
requested by processes. If Request[i] > Need[i] for any process i, raise an
error condition.

2. If Request[i] > Available for any process i, then that process must wait for
resources to become available. Otherwise the process can continue to step 3.

3. Check to see if the request can be granted safely, by pretending it has been
granted and then seeing if the resulting state is safe. If so, grant the request,
and if not, then the process must wait until its request can be granted safely.
The procedure for granting a request (or pretending to for testing purposes)
is:

= Auvailable = Available - Request
= Allocation = Allocation + Request
= Need = Need - Request
An lllustrative Example
Consider a system with 5 processes (Po ... P4) and 3 resources types (A(10) B(5) C(7))

Resource-allocation state at time to:

Process| Allocation Max Need Available
A B C|A B C|A B C|A B C

Po o 1 o(7 5 3|7 4 3|3 3 2

P1 2 0 o003 2 21 2 2

P2 3 0 2|19 0 2|6 0 O

P3 2 1 12 2 2|0 1 1

P4 o o 24 3 3|4 3 1

Is the system in a safe state? If so, which sequence satisfies the safety criteria?

< P31, P3, P4, P2, Po >

Now suppose, P1 requests an additional instance of A and 2 more instances of type C.
request[1] = (1,0,2)

1. check if request[1] <= need[i] (yes)

2. check if request[1] <= available[i] (yes)

3. do pretend updates to the state

Process| Allocation Max Need Available
A B C|A B C|A B C|A B C

Po o 1 o|7 5 3|7 4 3|3 3 2

P1 3 0 2 3 2 2 0 2 O

P> 3 0 2|19 0 2|6 0 O

P3 2 1 1 2 2 2 0 1 1

P4 O 0 2|4 3 3|4 3 1

Is the system in a safe state? If so, which sequence satisfies the safety criteria?
<P1, P3, P4, Po, P2>
Hence, we immediately grant the request.
Do it Yourself
Will a request of (3,3,0) by P4 be granted?
Will a request of (0,2,0) by PO be granted?

DEADLOCK DETECTION

« Definition: Deadlock detection is the process of determining that a deadlock exists

« and identifying the processes and resources involved in the deadlock.

If deadlocks are not avoided, then another approach is to detect when they have
occurred and recover somehow.

« In addition to the performance hit of constantly checking for deadlocks, a policy /
algorithm must be in place for recovering from deadlocks, and there is potential for
lost work when processes must be aborted or have their resources preempted.

Single Instance of Each Resource Type

If each resource category has a single instance, then we can use a variation of the

resource-allocation graph known as a wait-for graph.

« A wait-for graph can be constructed from a resource-allocation graph by eliminating
the resources and collapsing the associated edges, as shown in the figure below.
e An arc from Pi to Pj in a wait-for graph indicates that process Pi is waiting for a

resource that process Pj is currently holding.

A

(P,
@)

R, ARs
(a) (b)
Figure 2.21 - (a) Resource allocation graph. (b) Corresponding wait-for graph

o As before, cycles in the wait-for graph indicate deadlocks.

« This algorithm must maintain the wait-for graph, and periodically search it for cycles.
Several Instances of a Resource Type

e The detection algorithm outlined here is essentially the same as the Banker's
algorithm, with two subtle differences:

o In step 1, the Banker's Algorithm sets Finish[i] to false for all i. The
algorithm presented here sets Finish[i] to false only if Allocation[i] is not
zero. If the currently allocated resources for this process are zero, the
algorithm sets Finish[i] to true. This is essentially assuming that IF all of the
other processes can finish, then this process can finish also. Furthermore, this
algorithm is specifically looking for which processes are involved in a

deadlock situation, and a process that does not have any resources allocated

cannot be involved in a deadlock, and so can be removed from any further

consideration.

o Steps 2 and 3 are unchanged

o In step 4, the basic Banker's Algorithm says that if Finish[i] == true for all i,

that there is no deadlock. This algorithm is more specific, by stating that if

Finish[i] == false for any process Pi, then that process is specifically

involved in the deadlock which has been detected.

(Note: An alternative method was presented above, in which Finish held integers

instead of booleans. This vector would be initialized to all zeros, and then filled with

increasing integers as processes are detected which can finish. If any processes are left

at zero when the algorithm completes, then there is a deadlock, and if not, then the

integers in finish describe a safe sequence. To modify this algorithm to match this

section of the text, processes with allocation = zero could be filled in with N, N - 1,

N - 2, etc. in step 1, and any processes left with Finish = 0 in step 4 are the

deadlocked processes.)

Consider, for example, the following state, and determine if it is currently deadlocked:

Allocation Request Available
ABC ABC ABC
Py 010 000 000
P 200 202
P, 303 000
P 211 100
Py 002 002

Now suppose that process P2 makes a request for an additional instance of type C,

yielding the state shown below. Is the system now deadlocked?

Allocation ~ Request Available
ABC ABC ABC

Py 010 000 000
P 200 202
P, 303 001
P, 211 100
Py 002 002

Detection-Algorithm Usage

When should the deadlock detection be done? Frequently, or infrequently?

The answer may depend on how frequently deadlocks are expected to occur, as well
as the possible consequences of not catching them immediately. (If deadlocks are not
removed immediately when they occur, then more and more processes can "back up"
behind the deadlock, making the eventual task of unblocking the system more
difficult and possibly damaging to more processes.)

There are two obvious approaches, each with trade-offs:

1 Do deadlock detection after every resource allocation which cannot be
immediately granted. This has the advantage of detecting the deadlock right
away, while the minimum numbers of processes are involved in the deadlock.
(One might consider that the process whose request triggered the deadlock
condition is the "cause" of the deadlock, but realistically all of the processes in
the cycle are equally responsible for the resulting deadlock.) The down side of
this approach is the extensive overhead and performance hit caused by
checking for deadlocks so frequently.

2. Do deadlock detection only when there is some clue that a deadlock may have
occurred, such as when CPU utilization reduces to 40% or some other magic
number. The advantage is that deadlock detection is done much less
frequently, but the down side is that it becomes impossible to detect the
processes involved in the original deadlock, and so deadlock recovery can be
more complicated and damaging to more processes.

3. (As | write this, a third alternative comes to mind: Keep a historical log of

resource allocations, since that last known time of no deadlocks. Do deadlock

checks periodically (Once an hour or when CPU usage is low?), and then use
the historical log to trace through and determine when the deadlock occurred
and what processes caused the initial deadlock. Unfortunately I'm not certain

that breaking the original deadlock would then free up the resulting log jam.)

Weaknesses in the Banker's Algorithm

The Banker's Algorithm is compelling because it allows processes to proceed that might

have had to wait under a deadlock prevention situation. But the algorithm has a number of

weaknesses.

It requires that there be a fixed number of resources to allocate. Because resources
frequently require service, due to breakdowns or preventive maintenance, we cannot
count on the number of resources remaining fixed. Similarly, operating systems that
support hot swappable devices (e.g., USB devices) allow the number of resources to
vary dynamically.

The algorithm requires that the population of processes remains fixed. This, too, is
unreasonable. In today's interactive and multiprogrammed systems, the process
population is constantly changing.

The algorithm requires that the banker (i.e., the system) grant all requests within a
"finite time." Clearly, much better guarantees than this are needed in real systems,
especially real-time systems.

Similarly, the algorithm requires that clients (i.e., processes) repay all loans (i.e.,
return all resources) within a "finite time." Again, much better guarantees than this are
needed in real systems.

The algorithm requires that processes state their maximum needs in advance. With
resource allocation becoming increasingly dynamic, it is becoming more difficult to
know a process's maximum needs. Indeed, one main benefit of today's high-level
programming languages and "friendly" graphical user interfaces is that users are not
required to know such low level details as resource use. The user or programmer
expects the system to "print the file" or "send the message” and should not need to

worry about what resources the system might need to employ to honor such requests.

For the reasons stated above, Banker's Algorithm is not implemented in today's operating

systems. In fact, few systems can afford the overhead incurred by deadlock avoidance

strategies.

RECOVERY FROM DEADLOCK
There are three basic approaches to recovery from deadlock:

1. Inform the system operator, and allow him/her to take manual intervention.

2. Terminate one or more processes involved in the deadlock

3. Preempt resources.

Process Termination
Two basic approaches, both of which recover resources allocated to terminated
processes:

o Terminate all processes involved in the deadlock. This definitely solves the
deadlock, but at the expense of terminating more processes than would be
absolutely necessary.

o Terminate processes one by one until the deadlock is broken. This is more
conservative, but requires doing deadlock detection after each step.

In the latter case there are many factors that can go into deciding which processes to
terminate next:

1. Process priorities.

2. How long the process has been running, and how close it is to finishing.

3. How many and what type of resources is the process holding. (Are they easy
to preempt and restore?)

4. How many more resources does the process need to complete.

5. How many processes will need to be terminated

6. Whether the process is interactive or batch.

7. (Whether or not the process has made non-restorable changes to any resource.)

Resource Preemption
« When preempting resources to relieve deadlock, there are three important issues to be
addressed:

1 Selecting a victim - Deciding which resources to preempt from which
processes involves many of the same decision criteria outlined above.

2 Rollback - Ideally one would like to roll back a preempted process to a safe
state prior to the point at which that resource was originally allocated to the

process. Unfortunately it can be difficult or impossible to determine what such

a safe state is, and so the only safe rollback is to roll back all the way back to
the beginning. (i.e. abort the process and make it start over.)

3. Starvation - How do you guarantee that a process won't starve because its
resources are constantly being preempted? One option would be to use a
priority system, and increase the priority of a process every time its resources
get preempted. Eventually it should get a high enough priority that it won't get
preempted any more.

TWO MARKS QUESTIONS AND ANSWERS
1. Define deadlock.

A process requests resources; if the resources are not available at that time, the process enters
a wait state. Waiting processes may never again change state, because the resources they have
requested are held by other waiting processes. This situation is called a deadlock.
2. What is the sequence in which resources may be utilized?
Under normal mode of operation a process may utilize a resource in the following sequence:

o Request: If the request cannot be granted immediately, then the requesting process

must wait until it can acquire the resource.

o Use: The process can operate on the resource.

o Release: The process releases the resource.
3. What are conditions under which a deadlock situation may arise?
A deadlock situation can arise if the following four conditions hold simultaneously in a
system:

o Mutual exclusion

o Hold and wait

o No pre-emption

o Circular wait
4. What is a resource-allocation graph?
Resource allocation graph is directed graph which is used to describe deadlocks. This graph
consists of a set of vertices V and a set of edges E. The set of vertices V is partitioned into
two different types of nodes; P the set consisting of all active processes in the system and R
the set consisting of all resource types in the system.

5. Define request edge and assignment edge.

A directed edge from process Pi to resource type Rj (denoted by Pi — Rj) is called as request
edge; it signifies that process Pi requested an instance of resource type Rj and is currently
waiting for that resource. A directed edge from resource type Rj to process Pi (denoted by Rj
— Pi) is called an assignment edge; it signifies that an instance of resource type has been
allocated to a process Pi.
6. What are the methods for handling deadlocks?

The deadlock problem can be dealt with in one of the three ways:

1. Use a protocol to prevent or avoid deadlocks, ensuring that the system will never enter

a deadlock state.

2. Allow the system to enter the deadlock state, detect it and then recover.

3. Ignore the problem all together, and pretend that deadlocks never occur in the system.
REVIEW QUESTIONS AND ANSWERS

i Suppose a spooling system has a saturation threshold of 75 percent and limits the
maximum size of each file to 25 percent of the total spooling file size. Could deadlock occur
in this system?

Ans: Yes, deadlock can still occur in this system. For instance, several jobs can begin

transferring their outputs. When the spooling file reaches the 75 percent threshold, new jobs

are not allowed. However, jobs that have begun are allowed to continue spooling, which may
result in deadlock if there is insufficient space in the spooling file.

2 Suppose a spooling system has a saturation threshold of 75 percent and limits the

maximum size of each file to 25 percent of the total spooling file size. Describe a simple way

to ensure that deadlock will never occur in the system. Explain how this could lead to
inefficient resource allocation.

Ans: A simple adjustment would be to allow only one job to continue spooling data when the

file reaches the threshold. This would be inefficient because it would limit the maximum job

size to much less than the available spooling space.

3 Describe how the four necessary conditions for deadlock apply to spooling systems.
Ans: No two jobs can simultaneously write data to the same location in the spooling file.
Partially spooled jobs remain in the spooling file until more space is available. Jobs
cannot remove other jobs from the spooling file. Finally, when the spooling file is full,
each job waits for all of the other jobs to free up space.

4, Compare and contrast deadlock prevention and deadlock avoidance.

Ans: Deadlock prevention makes deadlock impossible but results in lower resource
utilization. With deadlock avoidance, when the threat of deadlock approaches, it is
sidestepped and resource utilization is higher. Systems using either deadlock prevention or
deadlock avoidance will be free of deadlocks.

5 Some systems ignore the problem of deadlock. Discuss the costs and benefits of this

approach.
Ans: Systems that ignore deadlock may fail when deadlock occurs. This is an unacceptable
risk in mission-critical systems, but it may be appropriate in other systems where deadlocks
rarely occur and the "cost" of dealing with an occasional deadlock is lower than the costs of
implementing deadlock prevention or avoidance schemes.

6. (T/F) An unsafe state is a deadlocked state.

Ans: False. A process in an unsafe state might eventually deadlock, or it might complete its
execution without entering deadlock. What makes the state unsafe is simply that the operating
system cannot guarantee that from this state all processes can complete their work. From an
unsafe state, it is possible but not guaranteed that all processes could complete their work, so
a system in an unsafe state could eventually deadlock.

7. Describe the restrictions that the Banker's Algorithm places on processes.

Each process, before it runs, is required to specify the maximum number of resources it may
require at any point during its execution. Each process cannot request more than the total
number of resources in the system. Each process must also guarantee that once allocated a
resource, the process will eventually return that resource to the system within a finite time.

8 Why is deadlock possible, but not guaranteed, when a system enters an unsafe state?
Ans: Processes could give back their resources early, increasing the number of available
resources to the point that the state of the system was once again safe and all other processes
could finish

9. Why does the Banker's Algorithm fail in systems that support hot swappable devices?
Ans: The Banker's Algorithm requires that the number of resources of each type remain
fixed. Hot swappable devices can be added and removed from the system at any time,
meaning that the number of resources of each type can vary.

10. Suppose a process has control of a resource of type R1. Does it matter which small

circle points to the process in the resource-allocation graph?

Ans: No; all resources of the same type must provide identical functionality, so it does not
matter which small circle within the circle R1 points to the process.

1L What necessary condition for deadlock is easier to identify in a resource-allocation
graph than it is to locate by analyzing the resource-allocation data of all the system's
processes?

Ans: Resource-allocation graphs make it easier to identify circular waits.

12 Why might deadlock detection be a better policy than either deadlock prevention or
deadlock avoidance? Why might it be a worse policy?

Ans: In general, deadlock detection places fewer restrictions on resource allocation, thereby
increasing resource utilization. However, it requires that the deadlock detection algorithm be
performed regularly, which can incur significant overhead.

13 Suppose a system attempts to reduce deadlock detection overhead by performing
deadlock detection only when there are a large number of processes in the system. What is
one drawback to this strategy?

Ans: Because deadlock can occur between two processes, the system might not ever detect

some deadlocks if the number of processes in the system is small.
KEY TERMS

circular wait—Condition for deadlock that occurs when two or more processes are locked in
a "circular chain,” in which each process in the chain is waiting for one or more resources
that the next process in the chain is holding.

circular-wait necessary condition for deadlock—One of the four necessary conditions for
deadlock; states that if a deadlock exists, there will be two or more processes in a circular
chain such that each process is waiting for a resource held by the next process in the chain.
deadline scheduling—Scheduling a process or thread to complete by a definite time; the
priority of the process or thread may need to be increased as its completion deadline
approaches.

deadlock—Situation in which a process or thread is waiting for an event that will never
occur.

deadlock avoidance—Strategy that eliminates deadlock by allowing a system to approach
deadlock, but ensuring that deadlock never occurs. Avoidance algorithms can achieve higher

performance than deadlock prevention algorithms.

deadlock detection—Process of determining whether or not a system is deadlocked. Once
detected, a deadlock can be removed from a system, typically resulting in loss of work.
deadlock prevention—Process of disallowing deadlock by eliminating one of the four
necessary conditions for deadlock.

deadlock recovery—Process of removing a deadlock from a system. This can involve
suspending a process temporarily (and preserving its work) or sometimes killing a process
(thereby losing its work) and restarting it.

dedicated resource—Resource that may be used by only one process at a time. Also known
as a serially reusable resource.

Banker's Algorithm—Deadlock avoidance algorithm that controls resource allocation based
on the amount of resources owned by the system, the amount of resources owned by each
process and the maximum amount of resources that the process will request during execution.
Allows resources to be assigned to processes only when the allocation results in a safe state.
graph reduction—Altering a resource-allocation graph by removing a process if that process
can complete. This also involves removing any arrows leading to the process (from the
resources allocated to the process) or away from the process (to resources the process is
requesting). A resource-allocation graph can be reduced by a process if all of that process's
resource requests can be granted, enabling that process to run to completion and free its
resources.

maximum need (Dijkstra's Banker's Algorithm) —Characteristic of a process in Dijkstra's
Banker's Algorithm that describes the largest number of resources (of a particular type) the
process will need during execution.

mutual exclusion necessary condition for deadlock—One of the four necessary conditions
for deadlock; states that deadlock can occur only if processes cannot claim exclusive use of
their resources.

necessary condition for deadlock—Condition that must be true for deadlock to occur. The
four necessary conditions are the mutual exclusion condition, no-preemption condition, wait-
for condition and circular-wait condition.

no-preemption necessary condition for deadlock—One of the four necessary conditions
for deadlock; states that deadlock can occur only if resources cannot be forcibly removed

from processes.

nonpreemptible resource—Resource that cannot be forcibly removed from a process, e.g., a
tape drive. Such resources are the kind that can become involved in deadlock.

preemptible resource—Resource that may be removed from a process such as a processor
or memory. Such resources cannot be involved in deadlock.

reentrant code—Code that cannot be changed while in use and therefore can be shared
among processes and threads.

resource allocation graph—Graph that shows processes and resources in a system. An
arrow pointing from a process to a resource indicates that the process is requesting the
resource. An arrow pointing from a resource to a process indicates that the resource is
allocated to the process. Such a graph helps determine if a deadlock exists and. If so, helps
identify the processes and resources involved in the deadlock.

resource type —Grouping of resources that perform a common task.

safe state—State of a system in Dijkstra's Banker's Algorithm in which there exists a
sequence of actions that will allow every process in the system to finish without the system
becoming deadlocked.

shared resource—Resource that can be accessed by more than one process. starvation—
Situation in which a thread waits for an event that might never occur, also called indefinite
postponement.

sufficient conditions for deadlock—The four conditions mutual exclusion, no-preemption,
wait-for and circular wait-which are necessary and sufficient for deadlock.
suspend/resume—Method of halting a process, saving its state, releasing its resources to
other processes, then restoring its resources after the other processes have released them.
transaction—Atomic, mutually exclusive operation that either completes or is rolled back.
Modifications to database entries are often performed as transactions to enable high
performance and reduce the cost of deadlock recovery.

unsafe state—State of a system in Dijkstra's Banker's Algorithm that might eventually lead
to deadlock because there might not be enough resources to allow any process to finish.
wait-for condition—One of the four necessary conditions for deadlock; states that deadlock

can occur only if a processis allowed to wait for a resource while it holds another.

EXPLANATORY QUESTIONS
1. Define deadlock.

2. Give an example of a deadlock involving only a single process and a single resource.

3. Give an example of a simple resource deadlock involving three processes and three
resources. Draw the appropriate resource — allocation graph

4. Define and discuss each of the following resource concepts.

a. preemptible resource

b. nonpreemptible resource

c. shared resource

d. dedicated resource

e. reentrant code

f. serially reusable code

g. dynamic resource allocation

5. State the four necessary conditions for a deadlock to exist. Give a brief intuitive
argument for the necessity of each individual condition.

6. Explain the intuitive appeal of deadlock avoidance over deadlock prevention.

7. The fact that a state is unsafe does not necessarily imply that the system will
deadlock. Explain why this is true. Give an example of an unsafe state and show how
all of the processes could complete without a deadlock occurring.

8. Dijkstra's Banker's Algorithm has a number of weaknesses that preclude its effective
use in real systems. Comment on why each of the following restrictions may be
considered a weakness in the Banker's Algorithm.

a. The number of resources to be allocated remains fixed.
b. The population of processes remains fixed.

c. The operating system guarantees that resource
requests will be serviced in a finite time.

d. Users guarantee that they will return held resources
within a finite time.

e. Users must state maximum resource

9. In a system in which it is possible for a deadlock to occur, under what circumstances
would you use a deadlock detection algorithm?

10. In the deadlock detection algorithm employing the technique of graph reductions,
show that the order of the graph reductions does not matter, the same final state will

result.

[Hint: No matter what the order, after each reduction, the available resource pool

increases.]

11. Why is deadlock recovery such a difficult problem?

12. Why is it difficult to choose which processes to "flush™ in deadlock recovery?
EXERCISE PROBLEMS AND SOLUTIONS

1. Consider three process, all arriving at time zero, with total execution time of 10, 20 and

30 units respectively. Each process spends the first 20% of execution time doing 1/0,
the next 70% of time doing computation, and the last 10% of time doing 1/O again. The
operating system uses a shortest remaining compute time first scheduling algorithm
and schedules a new process either when the running process gets blocked on 1/0 or
when the running process finishes its compute burst. Assume that all 1/0 operations can

be overlapped as much as possible. For what percentage of does the CPU remain idle?

1.0% 2.10.6% 3.0.0% 4. 89.4%
Solution-
According to question, we have-
Total Burst Time 1/0 Burst CPU Burst 1/0 Burst
Process P1 10 2 7 1
Process P2 20 4 14 2
Process P3 30 6 21 3
Gantt Chart-
0 2 4 6 10 23 25 44 47
- P1 P1 P1 P2 P2 P3 P3 -
«—> «—> «—> —
P1 P1 P2 P3
« - >
P3 Gantt Chart

Percentage of time CPU remains idle

= (5/47) x 100
= 10.638%

Thus, Option (B) is correct.

2. Consider the set of 4 processes whose arrival time and burst time are given below-

Burst Time
Process No. | Arrival Time
CPU Burst | 1/0O Burst | CPU Burst
P1 0 3 2 2
P2 0 2 4 1
P3 2 1 3 2
P4 5 2 2 1

If the CPU scheduling policy is Shortest Remaining Time First, calculate the average
waiting time and average turn around time.

Solution

Gantt Chart

Gantt Chart

Now, we know-
e Turn Around time = Exit time — Arrival time
e Waiting time = Turn Around time — Burst time

Also read- Various Times Of Process

Process Id Exit time Turn Around time Waiting time
P1 11 11-0=11 11-(3+2)=6
P2 7 7-0=7 7-(2+1) =4
P3 9 9-2=7 7-(1+2)=4
P4 16 16-5=11 11-(2+1)=8

e Average Turn Around time=(11+7+7+11)/4 =36/ 4 =9 units
e Average waitingtime=(6+4+4+8)/4=22/5=4.4units

3. Consider the set of 4 processes whose arrival time and burst time are given below-

Arrival o Burst Time
Process No.) Priority
Time CPU Burst 1/0 Burst CPU Burst
P1 0 2 1 5 3
P2 2 3 3 3 1
P3 3 1 2 3 1

If the CPU scheduling policy is Priority Scheduling, calculate the average waiting time and
average turn around time. (Lower number means higher priority)
Solution

The scheduling algorithm used is Priority Scheduling.

Gantt Chart
0 1 2 3 4 5 6 7 8 9
z- P2 P3 P3 P2 P1 P1 P3
P1 < >
P3
9 10 11 12 13 14 15
Al 0 Ex
< = >
Gantt Chart

Now, we know-
e Turn Around time = Exit time — Arrival time

o Waiting time = Turn Around time — Burst time

Process Id | Exit time | Turn Around time | Waiting time
P1 10 10-0=10 10— (1+3) =6
P2 15 15-2=13 13- (3+1)=9
P3 9 9-3=6 6 (2+1) =3

Now,
e Average Turn Around time = (10 + 13+ 6) / 3 =29/ 3 = 9.67 units
e Average waiting time = (6 + 9+ 3) /3 =18/ 3 =6 units

4. Consider three processes (process id 0, 1, 2 respectively) with compute time bursts 2, 4
and 8 time units. All processes arrive at time zero. Consider the longest remaining time
first (LRTF) scheduling algorithm. In LRTF ties are broken by giving priority to the

process with the lowest process id. The average turnaround time is:

(A) 13 units (B) 14 units (C) 15units (D) 16units
Answer: (A)
Explanation: Let the processes be p0, p1 and p2. These processes will be executed in

following order.
p2 p1 p2 pl p2 p0 pl p2 p0 p1 p2
045678910111213 14

Turn around time of a process is total time between submission of the process and its
completion.
Turn around time of p0 = 12 (12-0)

Turn around time of p1 = 13 (13-0)
Turn around time of p2 = 14 (14-0)
Average turn around time is (12+13+14)/3 = 13.

5 Consider three processes, all arriving at time zero, with total execution time of 10, 20
and 30 units, respectively. Each process spends the first 20% of execution time doing
1/0, the next 70% of time doing computation, and the last 10% of time doing 1/0 again.
The operating system uses a shortest remaining compute time first scheduling
algorithm and schedules a new process either when the running process gets blocked
on 1/O or when the running process finishes its compute burst. Assume that all 1/0
operations can be overlapped as much as possible. For what percentage of time does
the CPU remain idle?
(A) 0% (B) 10.6% (C) 30.0% (D) 89.4%
Answer: (B)
Explanation: Let three processes be p0, pl and p2. Their execution time is 10, 20 and 30

respectively. p0 spends first 2 time units in 1/0, 7 units of CPU time and finally 1 unit in 1/O.

pl spends first 4 units in 1/0, 14 units of CPU time and finally 2 units in 1/O. p2 spends first 6
units in 1/O, 21 units of CPU time and finally 3 units in I/O.
idle pO pl p2 idle

0 2 9 23 44 4/

Total time spent = 47

Idletime=2+3=5

Percentage of idle time = (5/47)*100 = 10.6 %

6. Consider three CPU-intensive processes, which require 10, 20 and 30 time units and
arrive at times 0, 2 and 6, respectively. How many context switches are needed if the
operating system implements a shortest remaining time first scheduling algorithm? Do
not count the context switches at time zero and at the end.

(A)1(B)2(C)3(D)4

Answer: (B)

Explanation: Let three process be PO, P1 and P2 with arrival times 0, 2 and 6 respectively
and CPU burst times 10, 20 and 30 respectively. At time 0, PO is the only available process so
it runs. At time 2, P1 arrives, but PO has the shortest remaining time, so it continues. At time
6, P2 arrives, but PO has the shortest remaining time, so it continues. At time 10, P1 is
scheduled as it is the shortest remaining time process. At time 30, P2 is scheduled. Only two
context switches are needed. PO to P1 and P1 to P2.

7. Which of the following process scheduling algorithm may lead to starvation

(A) FIFO (B) Round Robin
(C) Shortest Job Next (D) None of the above
Answer: (C)
Explanation: Shortest job next may lead to process starvation for processes which will
require a long time to complete if short processes are continually added.

8 If the quantum time of round robin algorithm is very large, then it is equivalent to:

(A) First in first out (B) Shortest Job Next
(C) Lottery scheduling (D) None of the above
Answer: (A)

Explanation: If time quantum is very large, then scheduling happens according to FCFS.

9. Which of the following is FALSE about SJF (Shortest Job First Scheduling)?
S1: It causes minimum average waiting time

S2: It can cause starvation

(A)Only S1 (B)Only S2
(C)Both S1 and S2 (D)Neither S1 nor S2
Answer: (D)
Explanation:

1. Both SJF and Shortest Remaining time first algorithms may cause starvation.
Consider a situation when long process is there in ready queue and shorter
processes keep coming.

2. SJF is optimal in terms of average waiting time for a given set of processes, but
problems with SJF is how to know/predict time of next job.

10. A single processor system has three resource types X, Y and Z, which are shared by
three processes. There are 5 units of each resource type. Consider the following
scenario, where the column alloc denotes the number of units of each resource type
allocated to each process, and the column request denotes the number of units of each
resource type requested by a process in order to complete execution. Which of these

processes will finish LAST?

1. PO
2. P1
3. P2
4. None of the above since the system is in a deadlock
Alloc Request
X Y Z X Y Z
PO 1 2 1 1 0 3
P1 2 0 1 0 1 2
P2 2 2 1 1 2 0

Solution-

According to question-

e Total=[XYZ]=[555]
e Total Alloc=[XYZ]=[543]

Now,

Available

= Total — Total_Alloc
=[555]-[543]
=[012]
Step-01:

« With the instances available currently, only the requirement of the process P1 can be

satisfied.

e So, process P1 is allocated the requested resources.

o It completes its execution and then free up the instances of resources held by it.

Then,

Available
=[012]+[201]
=[213]
Step-02:

o With the instances available currently, only the requirement of the process PO can be

satisfied.

e So, process PO is allocated the requested resources.

It completes its execution and then free up the instances of resources held by it.
Then-
Available
=[213]+[121]
=[334]
Step-03:
With the instances available currently, the requirement of the process P2 can be satisfied.
So, process P2 is allocated the requested resources.
It completes its execution and then free up the instances of resources held by it.
Then-

Available

=[334]+[221]

=[555]

Thus,
o There exists a safe sequence P1, PO, P2 in which all the processes can be executed.
e So, the system is in a safe state.
. Process P2 will be executed

at last. Thus, Option (C) is correct.

1. An operating system uses the banker’s algorithm for deadlock avoidance when managing
the allocation of three resource types X, Y and Z to three processes PO, P1 and P2. The
table given below presents the current system state. Here, the Allocation matrix shows the
current number of resources of each type allocated to each process and the Max matrix
shows the maximum number of resources of each type required by each process during its

execution.
Allocation Max
X Y Z X Y Z
PO 0 0 1 8 4 3
P1 3 2 0 6 2 0
P2 2 1 1 3 3 3

There are 3 units of type X, 2 units of type Y and 2 units of type Z still available. The system
is currently in safe state. Consider the following independent requests for additional resources
in the current state-
REQ1: PO requests 0 units of X, 0 units of Y and 2 units of Z
REQ2: P1 requests 2 units of X, 0 units of Y and 0 units of Z
Which of the following is TRUE?
1. Only REQL1 can be permitted

2. Only REQ2 can be permitted

3. Both REQ1 and REQ2 can be permitted

4. Neither REQ1 nor REQ2 can be permitted
Solution-

According to question,
Available=[XY Z]=[322]

Now,

Need = Max — Allocation

So, we have-

Allocation Max Need

X Y Z X Y Z X Y Z
PO 0 0 1 8 4 3 8 4 2
P1 3 2 0 6 2 0 3 0 0
P2 2 1 1 3 3 3 1 2 2

Currently, the system is in safe state.
(Itis given in question. If we want, we can check)
Checking Whether REQ1 Can Be Entertained-
Need of PO=[002]
Available=[322]
Clearly,
With the instances available currently, the requirement of REQ1 can be satisfied.

So, banker’s algorithm assumes that the request REQI is entertained.

It then modifies its data structures as-

Allocation Max Need

X Y Z X Y Z X Y Z
PO 0 0 3 8 4 3 8 4 0
P1 3 2 0 6 2 0 3 0 0
P2 2 1 1 3 3 3 1 2 2
Available
=[322]-[002]
=[320]

e Now, it follows the safety algorithm to check whether this resulting state is a safe state

or not.

o Ifitis asafe state, then REQ1 can be permitted otherwise not.
Step-01:
e With the instances available currently, only the requirement of the process P1 can be
satisfied.
e So, process P1 is allocated the requested resources.
o It completes its execution and then free up the instances of resources held by it.
Then-
Available
=[320]+[320]
=[640]

Now,

It is not possible to entertain any process.

The system has entered the deadlock state which is an unsafe state.
Thus, REQ1 will not be permitted. _
Checking Whether REQ2 Can Be Entertained-
Need of PL=[200]
Available=[322]
Clearly,

With the instances available currently, the requirement of REQ1 can be satisfied.

So, banker’s algorithm assumes the request REQ?2 is entertained.

It then modifies its data structures as-

Allocation Max Need

X Y Z X Y Z X Y
PO 0 0 1 8 4 3 8 4
P1 5 2 0 6 2 0 1 0
P2 2 1 1 3 3 3 1 2
Available

=[322]-[200]
=[122]

« Now, it follows the safety algorithm to check whether this resulting state is a safe
state or not.
o Ifitis a safe state, then REQ2 can be permitted otherwise not.
Step-01:
« With the instances available currently, only the requirement of the process P1 can be
satisfied.
e So, process P1 is allocated the requested resources.
o It completes its execution and then free up the instances of resources held by it.
Then-
Available
=[122]+[520]
=[642]
Step-02:
« With the instances available currently, only the requirement of the process P2 can be
satisfied.
e S0, process P2 is allocated the requested resources.
e It completes its execution and then free up the instances of resources held by it.
Then-
Available
=[642]+[211]
=[853]
Step-03:
With the instances available currently, the requirement of the process PO can be satisfied.
e So, process PO is allocated the requested resources.
o It completes its execution and then free up the instances of resources held by it.
Then-
Available
=[853]+[001]
=[854]
Thus,
o There exists a safe sequence P1, P2, PO in which all the processes can be executed.

e So, the system is in a safe state.

e Thus, REQ2 can be permitted.
Thus, Correct Option is (B).

12. A system has 4 processes and 5 allocatable resource. The current allocation and
maximum needs are as follows-

Allocated Maximum
A 1 0 2 1 1 1 1 2 1
B 2 0 1 1 0 2 2 2 1
C 1 1 0 1 1 2 1 3 1
D 1 1 1 1 0 1 1 2 2

If Available =[00 X 1 1], what is the smallest value of x for which this is a safe state?
Solution-
Let us calculate the additional instances of each resource type needed by each process.
We know,
Need = Maximum — Allocation
So, we have-
Need

A 0 1 0 0 2
B 0 2 1 0 0
C 1 0 3 0 0

D 0 0 1 1 0

Case-01: For X =0

If X =0, then-

Available

=[00011]

o With the instances available currently, the requirement of any process can not be
satisfied.

e So, for X =0, system remains in a deadlock which is an unsafe state.

Case-02: For X =1
If X =1, then-
Available
=[00111]
Step-01:
« With the instances available currently, only the requirement of the process D can be

satisfied.

e So, process D is allocated the requested resources.
o It completes its execution and then free up the instances of resources held by it.

Then-

Available

=[00111]+[11110]

=[11221]

With the instances available currently, the requirement of any process can not be satisfied.
e So, for X =1, system remains in a deadlock which is an unsafe state..

Case-02: For X =2

If X =2, then-

Available

=[00211]

Step-01:
« With the instances available currently, only the requirement of the process D can be

satisfied.
e So, process D is allocated the requested resources.
o It completes its execution and then free up the instances of resources held by it.
Then-
Available
=[00211]+[11110]
=[11321]
Step-02:
« With the instances available currently, only the requirement of the process C can be
satisfied.

e So, process C is allocated the requested resources.

o It completes its execution and then free up the instances of resources held by it.
Then-
Available
=[11321]+[11011]
=[22332]
Step-03:
With the instances available currently, the requirement of both the processes A and B can be
satisfied.
o So, processes A and B are allocated the requested resources one by one.
o They complete their execution and then free up the instances of resources held by it.
Then-
Available
=[22332]+[10211]+[20110]
=[52653]
Thus,
o There exists a safe sequence in which all the processes can be executed.
e So, the system is in a safe state.

e Thus, minimum value of X that ensures system is in safe state = 2.

UNIT 3. MEMORY MANAGEMENT
INTRODUCTION

e Memory accesses and memory management are a very important part of modern
computer operation. Every instruction has to be fetched from memory before it can be
executed, and most instructions involve retrieving data from memory or storing data
in memory or both.

o The advent of multi-tasking OS compounds the complexity of memory management,
as processes are swapped in and out of the CPU, so must their code and data be
swapped in and out of memory, all at high speeds and without interfering with any
other processes.

e Shared memory, virtual memory, the classification of memory as read-only versus
read-write, and concepts like copy-on-write forking all further complicate the issue.

BASIC HARDWARE

From the memory chips point of view, all memory accesses are equivalent. The
memory hardware doesn't know what a particular part of memory is being used for, nor does
it care. This is almost true of the OS as well, although not entirely.

The CPU can only access its registers and main memory. It cannot, for example, make
direct access to the hard drive, so any data stored there must first be transferred into the main
memory chips before the CPU can work with it. (Device drivers communicate with their
hardware via interrupts and "memory" accesses, sending short instructions for example to
transfer data from the hard drive to a specified location in main memory. The disk controller
monitors the bus for such instructions, transfers the data, and then notifies the CPU that the
data is there with another interrupt, but the CPU never gets direct access to the disk.)

Memory accesses to registers are very fast, generally one clock tick, and a CPU may be able
to execute more than one machine instruction per clock tick. A memory buffer used to
accommodate a speed differential, called a cache

Memory accesses to main memory are comparatively slow, and may take a number of
clock ticks to complete. This would require intolerable waiting by the CPU if it were not for
an intermediary fast memory cache built into most modern CPUs. The basic idea of the cache
is to transfer chunks of memory at a time from the main memory to the cache, and then to

access individual memory locations one at a time from the cache.

User processes must be restricted so that they only access memory locations that
"belong” to that particular process. This is usually implemented using a base register and a
limit register for each process, as shown in Figures 3.1 and 3.2 below.

0
operating
system
256000
process
300040 < 300040
process base
420940 =R
process L
880000
1024000

Figure 3.1 - A base and a limit register with a logical address space

Every memory access made by a user process is checked against these two registers,
and if a memory access is attempted outside the valid range, then a fatal error is generated.
The OS obviously has access to all existing memory locations, as this is necessary to swap
users' code and data in and out of memory. It should also be obvious that changing the
contents of the base and limit registers is a privileged activity, allowed only to the OS kernel.

The base register holds the smallest legal physical memory address; the limit register
specifies the size of the range. For example, if the base register holds 300040 and the limit
register is 120900, then the program can legally access all addresses from 300040 through
420939.

The base and limit registers can be loaded only by the operating system, which uses a
special privileged instruction. Since privileged instructions can be executed only in kernel
mode, and since only the operating system executes in kernel mode, only the operating
system can load the base and limit registers. This scheme allows the operating system to
change the value of the registers but prevents user programs from changing the registers

contents.

The operating system, executing in kernel mode, is given unrestricted access to both

operating system memory and user memory. This provision allows the operating system to

load users programs into user memory, to dump out those programs in case of errors, to

access and modify parameters of system calls

base base + limit

address
CPU

trap to operating system
monitor—addressing error memory

Figure 3.2 - Hardware address protection with base and limit registers

ADDRESS BINDING

User programs typically refer to memory addresses with symbolic names such as "i",

"count”, and "average Temperature”. These symbolic names must be mapped or bound to

physical memory addresses, which typically occurs in several stages:

Compile Time - If it is known at compile time where a program will reside in
physical memory, then absolute code can be generated by the compiler, containing
actual physical addresses. However if the load address changes at some later time,
then the program will have to be recompiled. DOS .COM programs use compile time
binding.

Load Time - If the location at which a program will be loaded is not known at
compile time, then the compiler must generate relocatable code, which references
addresses relative to the start of the program. If that starting address changes, then the
program must be reloaded but not recompiled.

Execution Time - If a program can be moved around in memory during the course of
its execution, then binding must be delayed until execution time. This requires special

hardware, and is the method implemented by most modern OS.

Figure 3.3 shows the various stages of the binding processes and the units involved in each

stages.

source
program

compiler or } compile

assembler time

other
object
modules

linkage
editor

load L load
module time
system

library

loader
dynamically)
loaded l
system
LEN e iRy execution
dyramic binary time (run
linking memory time)
image

Figure 3.3 - Multistep processing of a user program
LOGICAL VERSUS PHYSICAL ADDRESS SPACE

An address generated by the CPU is commonly referred to as a logical address,
whereas an address seen by the memory unit—that is, the one loaded into the memory-
address register of the memory—is commonly referred to as a physical address.
The compile-time and load-time address-binding methods generate identical logical and
physical addresses. However, the execution-time address binding scheme results in differing
logical and physical addresses. In this case, we usually refer to the logical address as a
virtual address. The set of all logical addresses generated by a program is a logical address
space; the set of all physical addresses corresponding to these logical addresses is a physical
address space. Thus, in the execution-time address-binding scheme, the logical and physical
address spaces differ.

The address generated by the CPU is a logical address, whereas the address actually
seen by the memory hardware is a physical address.

Addresses bound at compile time or load time have identical logical and physical
addresses. Addresses created at execution time, however, have different logical and physical

addresses.

The logical address is also known as a virtual address, and the two terms are used
interchangeably by our text. The set of all logical addresses used by a program composes the
logical address space, and the set of all corresponding physical addresses composes the
physical address space. The run time mapping of logical to physical addresses is handled by
the Memory-Management Unit, MMU.

The MMU can take on many forms. One of the simplest is a modification of the base-
register scheme described earlier. The base register is now termed a relocation register,
whose value is added to every memory request at the hardware level.

The user programs never uses physical addresses, User programs work entirely in
logical address space, and any memory references or manipulations are done using purely
logical addresses. Only when the address gets sent to the physical memory chips is the

physical memory address generated.

relocation
register

14000
logical physical
address m address

CPU >+ > memory
346 o 14346
MMU

Figure 3.4 - Dynamic relocation using a relocation register
DYNAMIC LOADING

The entire program and all data of a process to be in physical memory for the process
to execute. The size of a process has thus been limited to the size of physical memory. To
obtain better memory-space utilization, we can use dynamic loading.

Rather than loading an entire program into memory at once, dynamic loading loads up
each routine as it is called. The advantage is that unused routines need never be loaded,
reducing total memory usage and generating faster program start up times. The downside is
the added complexity and overhead of checking to see if a routine is loaded every time it is

called and then then loading it up if it is not already loaded.

The advantage of dynamic loading is that an unused routine is never loaded. This
method is particularly useful when large amounts of code are needed to handle infrequently
occurring cases, such as error routines. Although the total program size may be large, the
portion that is used (and hence loaded) may be much smaller.

Dynamic loading does not require special support from the operating system. It is the
responsibility of the users to design their programs to take advantage of such a method.
Operating systems may help the programmer, however, by providing library routines to
implement dynamic loading.

DYNAMIC LINKING AND SHARED LIBRARIES

Some operating systems support only static linking, in which system language
libraries are treated like any other object module and are combined by the loader into the
binary program image. Dynamic linking, in contrast, is similar to dynamic loading. Here,
though, linking, rather than loading, is postponed until execution time.

This feature is usually used with system libraries, such as language subroutine
libraries. Without this facility, each program on a system must include a copy of its language
library (or at least the routines referenced by the program) in the executable image. This
requirement wastes both disk space and main memory.

With dynamic linking, a stub is included in the image for each library routine
reference. The stub is a small piece of code that indicates how to locate the appropriate
memory-resident library routine or how to load the library if the routine is not already
present.

When the stub is executed, it checks to see whether the needed routine is already in
memory. If it is not, the program loads the routine into memory. Either way, the stub replaces
itself with the address of the routine and executes the routine. Thus, the next time that
particular code segment is reached, the library routine is executed directly, incurring no cost
for dynamic linking.

Under this scheme, all processes that use a language library execute only one copy of
the library code. This feature can be extended to library updates (such as bug fixes).A library
may be replaced by a new version, and all programs that reference the library will
automatically use the new version.

Without dynamic linking, all such programs would need to be relinked to gain access

to the new library. So that programs will not accidentally execute new, incompatible versions

of libraries, version information is included in both the program and the library. More than
one version of a library may be loaded into memory, and each program uses its version
information to decide which copy of the library to use.

Static linking library modules get fully included in executable modules, wasting both
disk space and main memory usage, because every program that included a certain routine
from the library would have to have their own copy of that routine linked into their
executable code.

With dynamic linking, however, only a stub is linked into the executable module, containing
references to the actual library module linked in at run time.

This method saves disk space, because the library routines do not need to be fully
included in the executable modules, only the stubs. If the code section of the library routines
is re-entrant, (meaning it does not modify the code while it runs, making it safe to re-enter it),
then main memory can be saved by loading only one copy of dynamically linked routines
into memory and sharing the code amongst all processes that are concurrently using it. (Each
process would have their own copy of the data section of the routines, but that may be small
relative to the code segments) that the OS must also manage shared routines in memory.

An added benefit of dynamically linked libraries (DLLs, also known as shared
libraries or shared objects on UNIX systems) involves easy upgrades and updates. When a
program uses a routine from a standard library and the routine changes, then the program
must be re-built (re-linked) in order to incorporate the changes. If DLLs are used, then as
long as the stub doesn't change, the program can be updated merely by loading new versions
of the DLLs onto the system. Version information is maintained in both the program and the
DLLs, so that a program can specify a particular version of the DLL if necessary.

The first time a program calls a DLL routine, the stub will recognize the fact and will
replace itself with the actual routine from the DLL library. Further calls to the same routine
will access the routine directly and not incur the overhead of the stub access.

SWAPPING

e A process must be loaded into memory in order to execute.
e If there is not enough memory available to keep all running processes in memory
at the same time, then some processes who are not currently using the CPU may

have their memory swapped out to a fast local disk called the backing store.

The memory manager will start to swap out the process that just finished and to swap

another process into the memory space that has been freed shown in Figure 3.5.

operating S
system
process P,
<:>swapout
) process P,
<:>swap1n
—]

L
user

space backing store

main memory

Figure 3.5 - Swapping of two processes using a disk as a backing store

A variant of this swapping policy is used for priority-based scheduling algorithms. If a
higher-priority process arrives and wants service, the memory manager can swap out the
lower-priority process and then load and execute the higher-priority process. When the
higher-priority process finishes, the lower-priority process can be swapped back in and
continued. This variant of swapping is sometimes called roll out, roll in. A process that is
swapped out will be swapped back into the same memory space it occupied previously. This
restriction is dictated by the method of address binding. If binding is done at assembly or load
time, then the process cannot be easily moved to a different location. If execution-time
binding is being used, however, then a process can be swapped into a different memory
space, because the physical addresses are computed during execution time.

Swapping requires a backing store. The backing store is commonly a fast disk. It must be
large enough to accommodate copies of all memory images for all users, and it must provide
direct access to these memory images.

The system maintains a ready queue consisting of all processes whose memory
images are on the backing store or in memory and are ready to run. Whenever the CPU
scheduler decides to execute a process, it calls the dispatcher. The dispatcher checks to see
whether the next process in the queue is in memory. If there is no free memory region, the
dispatcher swaps out a process currently in memory and swaps in the desired process. It then

reloads registers and transfers control to the selected process.

The context-switch time in such a swapping system is fairly high. To get an idea of
the context switch time, let us assume that the user process is 100 MB in size and the backing
store is a standard hard disk with a transfer rate of 50 MB per second. The actual transfer of
the 100 -MB process to or from main memory takes

100 MB /50 MB per Second = 2 Seconds.
STANDARD SWAPPING

If compile-time or load-time address binding is used, then processes must be swapped
back into the same memory location from which they were swapped out. If execution time
binding is used, then the processes can be swapped back into any available location.

Swapping is a very slow process compared to other operations. For example, if a user
process occupied 10 MB and the transfer rate for the backing store were 40 MB per second,
then it would take 1/4 second (250 milliseconds) just to do the data transfer. Adding in a
latency lag of 8 milliseconds and ignoring head seek time for the moment, and further
recognizing that swapping involves moving old data out as well as new data in, the overall
transfer time required for this swap is 512 milliseconds, or over half a second. For efficient
processor scheduling the CPU time slice should be significantly longer than this lost transfer
time.

To reduce swapping transfer overhead, it is desired to transfer as little information as
possible, which requires that the system know how much memory a process is using, as
opposed to how much it might use. Programmers can help with this by freeing up dynamic
memory that they are no longer using.

It is important to swap processes out of memory only when they are idle, or more to
the point, only when there are no pending I/O operations. (Otherwise the pending 1/O
operation could write into the wrong process's memory space.) The solution is to either swap
only totally idle processes, or do 1/0O operations only into and out of OS buffers, which are
then transferred to or from process's main memory as a second step.

Most modern OSes no longer use swapping, because it is too slow and there are faster
alternatives available. (e.g. Paging.) However some UNIX systems will still invoke swapping
if the system gets extremely full, and then discontinue swapping when the load reduces again.
Windows 3.1 would use a modified version of swapping that was somewhat controlled by the
user, swapping process's out if necessary and then only swapping them back in when the user

focused on that particular window.

SWAPPING ON MOBILE SYSTEMS

Swapping is typically not supported on mobile platforms, for several reasons:
Mobile devices typically use flash memory in place of more spacious hard drives for
persistent storage, so there is not as much space available.
e Flash memory can only be written to a limited number of times before it becomes
unreliable.
e The bandwidth to flash memory is also lower.
e Apple's I10S asks applications to voluntarily free up memory
e Read-only data, e.g. code, is simply removed, and reloaded later if needed.
e Modified data, e.g. the stack, is never removed, but Apps that fail to free up sufficient
memory can be removed by the OS
e Android follows a similar strategy.
e Prior to terminating a process, Android writes its application state to flash memory for
quick restarting.

CONTIGUOUS MEMORY ALLOCATION

The main memory must accommodate both the operating system and the various user
processes. We therefore need to allocate main memory in the most efficient way possible.
The memory is usually divided into two partitions:

e Resident operating system
e User processes.

The operating system can be placed either in low memory or high memory. The major
factor affecting this decision is the location of the interrupt vector. Since the interrupt vector
is often in low memory, programmers usually place the operating system in low memory as
well.

Memory management is to load each process into a contiguous space. The operating
system is allocated space first, usually at either low or high memory locations, and then the
remaining available memory is allocated to processes as needed. (The OS is usually loaded
low, because that is where the interrupt vectors are located, but on older systems part of the
OS was loaded high to make more room in low memory (within the 640K barrier) for user
processes.) In contiguous memory allocation, each process is contained in a single contiguous

section of memory.

MEMORY PROTECTION
The system shown in Figure 3.6 below allows protection against user programs
accessing areas that they should not, allows programs to be relocated to different memory
starting addresses as needed, and allows the memory space devoted to the OS to grow or

shrink dynamically as needs change.

limit relocation
register register
logical) physical
address yes address
CPU —— = >+ > memor
b 4 4

no

Y
trap: addressing error

Figure 3.6 - Hardware support for relocation and limit registers

CONTIGUOUS MEMORY ALLOCATION

One method of allocating contiguous memory is to divide all available memory into
equal sized partitions, and to assign each process to their own partition. This restricts both the
number of simultaneous processes and the maximum size of each process, and is no longer
used.

The memory blocks available comprise a set of holes of various sizes scattered
throughout memory. When a process arrives and needs memory, the system searches the set
for a hole that is large enough for this process. If the hole is too large, it is split into two parts.
One part is allocated to the arriving process; the other is returned to the set of holes. When a
process terminates, it releases its block of memory, which is then placed back in the set of
holes. If the new hole is adjacent to other holes, these adjacent holes are merged to form one
larger hole. At this point, the system may need to check whether there are processes waiting
for memory and whether this newly freed and recombined memory could satisfy the demands
of any of these waiting processes.

An alternate approach is to keep a list of unused (free) memory blocks (holes), and to

find a hole of a suitable size whenever a process needs to be loaded into memory.

There are many different strategies for finding the "best" allocation of memory to
processes, the three most common memory allocations are:

First fit - Search the list of holes until one is found that is big enough to satisfy the
request, and assign a portion of that hole to that process. Whatever fraction of the hole not
needed by the request is left on the free list as a smaller hole. Subsequent requests may start
looking either from the beginning of the list or from the point at which this search ended.

Best fit - Allocate the smallest hole that is big enough to satisfy the request. This
saves large holes for other process requests that may need them later, but the resulting unused
portions of holes may be too small to be of any use, and will therefore be wasted. Keeping the
free list sorted can speed up the process of finding the right hole.

Worst fit - Allocate the largest hole available, thereby increasing the likelihood that
the remaining portion will be usable for satisfying future requests.

Simulations show that either first or best fit are better than worst fit in terms of both
time and storage utilization. First and best fits are about equal in terms of storage utilization,
but first fit is faster.

FRAGMENTATION

“Fragmentation occurs in a dynamic memory allocation system when many of the free

blocks are too small to satisfy any request”.

Fragmentation refers to the condition of a disk in which files are divided into pieces
scattered around the disk. Fragmentation occurs naturally when you use a disk frequently,
creating, deleting, and modifying files. At some point, the operating system needs to store
parts of a file in non-contiguous clusters.

All the memory allocation strategies suffer from external fragmentation, though first
and best fits experience the problems more so than worst fit. External fragmentation means
that the available memory is broken up into lots of little pieces, none of which is big enough
to satisfy the next memory requirement, although the sum total could.

The amount of memory lost to fragmentation may vary with algorithm, usage
patterns, and some design decisions such as which end of a hole to allocate and which end to

save on the free list.

Statistical analysis of first fit, for example, shows that for N blocks of allocated
memory, another 0.5 N will be lost to fragmentation. There are two types of fragmentations
they are:

¢ Internal fragmentation
e External fragmentation

External Fragmentation happens when a dynamic memory allocation algorithm
allocates some memory and a small piece is left over that cannot be effectively used. If too
much external fragmentation occurs, the amount of usable memory is drastically reduced.
Total memory space exists to satisfy a request, but it is not contiguous.

Internal fragmentation occurs, with all memory allocation strategies. This is caused by
the fact that memory is allocated in blocks of a fixed size, whereas the actual memory needed
will rarely be that exact size. For a random distribution of memory requests, on the average
1/2 block will be wasted per memory request, because on the average the last allocated block
will be only half full.

Note that the same effect happens with hard drives, and that modern hardware gives
us increasingly larger drives and memory at the expense of ever larger block sizes, which
translates to more memory lost to internal fragmentation.

Some systems use variable size blocks to minimize losses due to internal
fragmentation.

If the programs in memory are relocatable, (using execution-time address binding).

Both the first-fit and best-fit strategies for memory allocation suffer from external
fragmentation. The external fragmentation problem can be reduced via compaction, i.e.
moving all processes down to one end of physical memory. This only involves updating the
relocation register for each process, as all internal work is done using logical addresses.

Another solution as we will see in upcoming sections is to allow processes to use non-
contiguous blocks of physical memory, with a separate relocation register for each block.

The goal is to shuffle the memory contents so as to place all free memory together in
one large block. Compaction is not always possible, however. If relocation is static and is
done at assembly or load time, compaction cannot be done; compaction is possible only if
relocation is dynamic and is done at execution time.

Another possible solution to the external-fragmentation problem is to permit the

logical address space of the processes to be non-contiguous, thus allowing a process to be

allocated physical memory wherever such memory is available. And it can be solved using
two techniques such as
e Paging
e Segmentation
Table 3.1 Comparison Chart between internal fragmentation and external

fragmentation

BASIS FOR INTERNAL EXTERNAL
COMPARISON FRAGMENTATION FRAGMENTATION

Basic It occurs when fixed sized It occurs when variable size
memory blocks are allocated memory space are allocated to
to the processes. the processes dynamically.

Occurrence When the memory assigned to | When the process is removed
the process is slightly larger from the memory, it creates
than the memory requested by | the free space in the memory
the process this creates free | causing external
space in the allocated block | fragmentation.
causing internal
fragmentation.

Solution The memory must be Compaction, paging and

partitioned into variable sized

segmentation.

blocks and assign the best fit
block to the process.

The problem of internal fragmentation can be reduced, but it cannot be totally
eliminated. The paging and segmentation help in utilising the space freed due to external
fragmentation by allowing a process to occupy the memory in a non-contiguous manner.

COMPACTION

The use of compaction is to minimize the probability of external fragmentation. In
compaction, all the free partitions are made contiguous and all the loaded partitions are
brought together.

By applying this technique, we can store the bigger processes in the memory. The free
partitions are merged which can now be allocated according to the needs of new processes.

This technique is also called defragmentation.

i -
Operating "
System partition for OS5
5 MB Free partition 1
Process P5
(8 MB)

" 3 MB Free partition 2

.| Process P2 .
2 MB Process P2 > (2 MB) partition 3

. Process P4 N
4 MB Process P4 > (4 MB) partition 4

Figure 3.7 Compaction
As shown in the Figure 3.7, the process P5, which could not be loaded into the
memory due to the lack of contiguous space, can be loaded now in the memory since the free
partitions are made contiguous.
Problem with Compaction
The efficiency of the system is decreased in the case of compaction due to the fact
that all the free spaces will be transferred from several places to a single place. Huge amount
of time is invested for this procedure and the CPU will remain idle for all this time. Despite
of the fact that the compaction avoids external fragmentation, it makes system inefficient.
TWO MARK QUESTIONS WITH ANSWERS
1. Why page are sizes always powers of 2?
Ans: The paging is implemented by breaking up an address into a page and offset
number. It is most efficient to break the address into X page bits and Y offset bits,
rather than perform arithmetic on the address to calculate the page number and offset.
Because each bit 25 26 position represents a power of 2, splitting an address between
bits results in a page size that is a power of 2.
2. Consider a logical address space of eight pages of 1024 words each, mapped onto
a physical memory of 32 frames.
a. How many bits are there in the logical address?

b. How many bits are there in the physical address?

Ans:

Ans: Each page/frame holds 1K; we will need 10 bits to uniquely address each of
those 1024 addresses. Physical memory has 32 frames and we need 25 bits to address
each frame, requiring in total 5+10=15 bits. A logical address space of 64 pages
requires 6 bits to address each page uniquely, requiring 16bits in total.
a. Logical address: 13 bits
b. Physical address: 15 bits
In the IBM/370, memory protection is provided through the use of keys. A key is
a 4-bit quantity. Each 2K block of memory has a key (the storage key) associated
with it? The CPU also has a key (the protection key) associated with it. A store
operation is allowed only if both keys are equal, or if either is zero. Which of the
following memory-management schemes could be used successfully with this
hardware?
e Bare machine
e Single-user system
e Multiprogramming with a fixed number of processes
e Multiprogramming with a variable number of processes
e Paging

e Segmentation

Protection not necessary set system key to 0.

Set system key to 0 when in supervisor mode.

Region sizes must be fixed in increments of 2k bytes, allocate key with memory
blocks.

Same as above.

Frame sizes must be in increments of 2k bytes, allocate key with pages.

Segment sizes must be in increments of 2k bytes, allocate key with segments
What is address binding?

Ans: The process of associating program instructions and data to physical memory
addresses is called address binding, or relocation.

Difference between internal and external fragmentation.

Ans: Internal fragmentation is the area occupied by a process but cannot be used by

the process. This space is unusable by the system until the process release the space.

10.

11.

External fragmentation exists when total free memory is enough for the new process
but it's not contiguous and can't satisfy the request. Storage is fragmented into small
holes.

Explain dynamic loading?

Ans: To obtain better memory-space utilization dynamic loading is used. With
dynamic loading, a routine is not loaded until it is called. All routines are kept on disk
in a relocatable load format. The main program is loaded into memory and executed.
If the routine needs another routine, the calling routine checks whether the routine has
been loaded. If not, the relocatable linking loader is called to load the desired program
into memory.

Explain dynamic Linking.

Ans: Dynamic linking is similar to dynamic loading, rather that loading being
postponed until execution time, linking is postponed. This feature is usually used with
system libraries, such as language subroutine libraries. A stub is included in the image
for each library-routine reference. The stub is a small piece of code that indicates how
to locate the appropriate memory-resident library routine, or how to load the library if
the routine is not already present.

Define swapping.

Ans: A process needs to be in memory to be executed. However a process can be
swapped temporarily out of memory to a backing store and then brought back into
memory for continued execution. This process is called swapping.

Define lazy swapper.

Ans: Rather than swapping the entire process into main memory, a lazy swapper is
used. A lazy swapper never swaps a page into memory unless that page will be
needed.

What are the common strategies to select a free hole from a set of available
holes?

Ans: The most common strategies are,

* First fit

» Worst fit

* Best fit

Define effective access time.

12.

13.

14.

15.

Ans: Let p be the probability of a page fault. The value of p is expected to be close to
0; that is, there will be only a few page faults. The effective access time is

Effective access time = (1-p) * ma + p * page fault time.
Where ma: memory-access time.
How the problem of external fragmentation can be solved.
Ans: Solution to external fragmentation:
a) Compaction: shuffling the fragmented memory into one contiguous location.
b) Virtual memory addressing by using paging and segmentation.
What you mean by compaction? In which situation is it applied.
Ans: Compaction is a process in which the free space is collected in a large memory
chunk to make some space available for processes. In memory management,
swapping Creates multiple fragments in the memory because of the processes moving
in and out. Compaction refers to combining all the empty spaces together and
processes.
Define Address binding.
Ans: Address binding is the process of mapping the program's logical or virtual
addresses to corresponding physical or main memory addresses. In other words, a
given logical address is mapped by the MMU (Memory Management Unit) to a
physical address.
Define External Fragmentation.
Ans: It is a situation, when total memory available is enough to process a request but

not in contiguous manner.

5 MARK QUESTIONS

1.

Explain about the difference between internal fragmentation and external
fragmentation.

What are the memory management requirements?

Explain difference between internal external fragmentations in detail.

Free memory holes of sizes 15K, 10K, 5K, 25K, 30K, 40K are available. The
processes of size 12K, 2K, 25K, 20K is to be allocated. How processes are placed in
first fit, best fit, worst fit. Calculate internal as well as external fragmentation.

Write short notes on swapping.

10 MARK QUESTIONS
1. Explain in detail about the concept of memory management.
2. Explain in detail about swapping and its techniques used.

KEY TERMS

Base register—Register containing the lowest memory address a process may reference.
Best-fit memory placement strategy—Memory placement strategy that places an incoming
job in the smallest hole in memory that can hold the job.

Boundary register—Register for single-user operating systems that was used for memory
protection by separating user memory space from kernel memory space.

Cache memory—Small, expensive, high-speed memory that holds copies of programs and
data to decrease memory access times.

Coalescing memory holes—Process of merging adjacent holes in memory in variable
partition multiprogramming systems. This helps create the largest possible holes available for
incoming programs and data.

Contiguous memory allocation—Method of assigning memory such that all of the
addresses in the process's entire address space are adjacent to one another.

Demand fetch strategy—Method of bringing program parts or data into main memory as
they are requested by a process

Executive mode— protected mode in which a processor can execute operating system
instructions on behalf of a user (also called kernel mode).

External fragmentation—Phenomenon in variable-partition memory systems in which there
are holes distributed throughout memory that are too small to hold a process.

Fetch strategy—Method of determining when to obtain the next piece of program or data for
transfer from secondary storage to main memory.

First-fit memory placement strategy—Memory placement strategy that places an incoming
process in the first hole that is large enough to hold it.

Fixed-partition multiprogramming—Memory organization that divides main memory into
a number of fixed-size partitions, each holding a single job.

Fragmentation (of main memory)—Phenomenon wherein a system is unable to make use of

certain areas of available main memory.

Free memory list — Operating system data structure that points to available holes in

memory.

SAMPLE PROBLEMS WITH SOLUTIONS

1 A computer has a single cache (off-chip) with a 2 ns hit time and a 98% hit rate.
Main memory has a 40 ns access time. What is the computer’s effective access time?
If we add an on-chip cache with a .5 ns hit time and a 94% hit rate, what is the
computer’s effective access time? How much of a speedup does the on-chip cache
give the computer?

Answers:

2ns+.02*40ns=2.8ns.
With the on-chip cache, we have .5 ns + .06 * (2 ns + .02 * 40 ns) = .668 ns.
The speedup is 2.8/ .668 = 4.2.

2 Assume a computer has on-chip and off-chip caches, main memory and virtual memory.
Assume the following hit rates and access times: on-chip cache 95%, 1 ns, off-chip cache
99%, 10 ns, and main memory: X%, 50 ns, virtual memory: 100%, 2,500,000 ns. Notice
that the on-chip access time is 1 ns. We do now want our effective access time to increase
much beyond 1 ns. Assume that an acceptance effective access time is 1.6 ns. What should

X be (the percentage of page faults) to ensure that EAT is no worse than 1.6 ns?

Answer:
EAT =1ns+.05* (10 ns + .01 * (50 ns + (1 — X) * 2,500,000 ns)).
Since we want EAT to be no more than 1.6 ns,
We solve for X with 1.6 ns = 1ns + .05 * (10 ns + .01 * (50 ns + (1 — X) * 2,500,000ns)).
X=1-((((((1.25 ns—1ns) / .05) — 10 ns) / .01) — 50 ns) / 2,500,000).
X =0.99994 = 99.994%.

Our miss rate for virtual memory must be no worse than .006%o!

UNIT 4 - SWAPPING

INTRODUCT
ION

A process must be in memory to be executed. A process, can be swapped temporarily
out of memory to a backing store and then brought back into memory for continued execution.
For example, assume a multiprogramming environment with a round-robin CPU-scheduling
algorithm. When a quantum expires, the memory manager will start to swap out the process
that has just finished and starts to swap another process into the memory space that has been
freed (Figurel). Meanwhile, the CPU scheduler will allocate a timeslice to other process in
memory. When each process finishes its quantum, it will be swapped with another process. A
variant of this swapping policy is used for priority-based scheduling algorithms. If a higher-
priority process arrives and wants service, the memory manager can swap out the lower-
priority process and then load and execute the higher-priority process. When the higher-priority
process finishes, the lower-priority process can be swapped back in and continued. This variant
of swapping is sometimes called roll out, roll in. A process that is swapped out will be

swapped back into the same memory space it occupied previously.

AT

operating e ——
system
@ R —_— process P,
) process P,
@ swap in
s]

S
user

SPAcs backing store

main memory

Figure 1: Swapping of two processes using a disk as a backing store

The system maintains a ready queue consisting of all processes whose memory images
are on the backing store, a fast disk that is large enough to accommodate copies of all memory

images for all users that are ready to run. Whenever the CPU scheduler decides to execute a

process, it calls the dispatcher. The dispatcher checks to see whether the next process in the
queue is in memory. If the next process is not in memory, and if there is no free memory
region, the dispatcher swaps out a process currently in memory and swaps in the desired
process. It then reloads registers and transfers control to the selected process. The context-

switch time in such a swapping system is fairly high.

To get an idea of the context-switch time, let us assume that the user process is 100 MB
in size and the backing store is a standard hard disk with a transfer rate of 50 MB per second.
The actual transfer of the 100-MB process to or from main memory takes 100 MB/50 MB per
second = 2 seconds. Assuming an average latency of 8 milliseconds, the swap time is 2008
milliseconds. Since we must both swap out and swap in, the total swap time is about 4016
milliseconds. Here, the major part of the swap time is transfer time. The total transfer time is

directly proportional to the amount of memory swapped.

Generally, swap space is allocated as a chunk of disk, separate from the file system, so
that its use is as fast as possible. Currently, standard swapping is used in few systems. It
requires too much swapping time and provides too little execution time to be a reasonable

memory-management solution.

MEMORY MANAGEMENT WITH BITMAPS

-

11111000 IF’|015|—|—>|H|5|3|+’[P18|61_'_'lplml“l‘})

n R 10 0N i g

11001111

71117000 CI/HI*f*IE\I s g 2 2 IS o KO- LTS o (L0 O IR

T T Hole Starts Length Process
at 18 2
(b) (c)

Figure 2: (a) A part of memory with five processes and three holes. The tick marks
show the memory allocation units. The shaded regions (0 in the bitmap) are free. (b)

The corresponding bitmap. (c) The same information as a list.

When memory is assigned dynamically, the operating system must manage it. With a
bitmap. The memory is divided up into allocation units, perhaps as small as a few words and
perhaps as large as several kilobytes. According to each allocation unit, a bit in the bitmap,
which is 0 means the unit is free and 1 it is occupied (or vice versa). Figure 2 shows part of

memory and the corresponding bitmap.

MEMORY MANAGEMENT WITH LINKED LISTS

Another way of keeping track of memory is to maintain a linked list of allocated and
free memory segments, where a segment is either a process or a hole between two processes. In
linked list each entry in the list specifies a hole (H) or process (P), the address at which it starts,
the length, and a pointer to the next entry. Figure 3 gives an example, in which the segment list
is kept sorted by address. Sorting this way has the advantage that when a process terminates or
is swapped out, updating the list is straightforward.

A terminating process normally has two neighbours (except when it is at the very top or
very bottom of memory). These may be either processes or holes, leading to the four
combinations shown in figure 3. When the processes and holes are kept on a list sorted by
address, several algorithms can be used to allocate memory for a newly created process (or an
existing process being swapped in from disk). To allocate the memory for a process the

following algorithms can be used.

Before X terminates After X terminates

@| A | x | B becomes WA/ E
| A | x 7] vecomes | A V77777
(©) % X B becomes W B
@ V4 x W vecomes 1777

Figure 3: Four neighbour combinations for the terminating process, X.

First Fit: The simplest algorithm is first fit. The process manager scans along the list of

segments until it finds a hole that is big enough to allocate the process. The hole is then broken

up into two pieces, one for the process and one for the unused memory, except in the
statistically unlikely case of an exact fit. First fit is a fast algorithm because it searches as little
as possible.

Next Fit: It works the same way as first fit, except that it keeps track of memory to find a
suitable hole. The next time when it is called to find a hole, it starts searching the list from the
place where it left the last time, instead of always at the beginning, as first fit does.

Best Fit: Best fit searches the entire list and takes the smallest hole that is adequate. Rather
than breaking up a big hole that might be needed later, best fit tries to find a hole that is close
to the actual size needed.

Worst Fit: Always take the largest available hole, so that the hole broken off will be big
enough to be useful. Usually worst fit is not a very good idea because it takes a large amount of
memory even for a small process.

Quick Fit: maintains separate lists for some of the more common sizes requested. For
example, it might have a table with n entries, in which the first entry is a pointer to the head of
a list of 4-KB holes, the second entry is a pointer to a list of 8-KB holes, the third entry a
pointer to 12-KB holes, and so on. Holes of say, 21 KB, could either be put on the 20-KB list
or on a special list of odd-sized holes. With quick fit, finding a hole of the required size is
extremely fast, it has very less disadvantage of all other algorithms that sort by hole size, to
finds its neighbours to see if it can a merge adjacent holes. which is expensive. If merging is
not possible memory will quickly fragment into a large number of small holes into which no

processes fit.

Both the first-fit and best-fit for memory allocation can suffer from external
fragmentation. External fragmentation exists when there is enough total memory space to
satisfy a request but the available spaces are not contiguous; storage is fragmented into a large
number of small holes. This fragmentation problem can be severe. In the worst case, we could
have a block of free (or wasted) memory between every two processes. If all these small pieces
of memory were in one big free block instead, we might be able to run several more processes.
Depending on the total amount of memory storage and the average process size, external
fragmentation may be a minor or a major problem. The general approach to avoiding this
problem is to break the physical memory into fixed-sized blocks and allocate memory in units
based on block size. With this approach, the memory allocated to a process may be slightly

larger than the requested memory, which leads to internal fragmentation which has unused

memory that is internal to a partition.

One solution to the problem of external fragmentation is compaction. Compaction is
not always possible, however. If relocation is static and is done at load time, compaction
cannot be done. Compaction is possible only if relocation is dynamic and is done at execution
time. If addresses are relocated dynamically, relocation requires only moving the program and
data and then changing the base register to reflect the new base address. Another possible
solution to the external-fragmentation problem is to permit the logical address space of the
processes to be non-contiguous, thus allowing a process to be allocated to physical memory
wherever such memory is available. Two complementary techniques to achieve this solution:

Paging and Segmentation, these techniques can also be combined.
PAGING

Paging is a memory-management scheme that permits the physical address space of a
process to be non-contiguous. Paging avoids external fragmentation and the need for
compaction. It also solves the considerable problem of fitting memory chunks of varying sizes
onto the backing store. The problem arises because, when some code fragments or data

residing in main memory need to be swapped out, space must be found on the backing store.

Definition: Paging is a memory-management scheme that permits the physical address
space of a process to be non-contiguous. Paging avoids external fragmentation and the

need for compaction.

MAPPING OF PAGES TO FRAMES

The basic method for implementing paging involves breaking physical memory into
fixed-sized blocks called frames and breaking logical memory into blocks of the same size
called pages. When a process is to be executed, its pages are loaded into any available memory
frames from their source (a file system or the backing store). The backing store is divided into
fixed-sized blocks that are of the same size as the memory frames. The hardware support for

paging is illustrated in Figure 4.

—

logical physical
address address 0000 ... 0000
cru [T T =
~ f1111 ... 1111

- f

physical
memaory

page table

Figure 4: Paging hardware.

Every address generated by the CPU is divided into two parts: a page number (p) and a
page offset (d). The page number is used as an index into a page table. The page table contains
the base address of each page in physical memory. This base address is combined with the
page offset to define the physical memory address that is sent to the memory unit. Figure 5

illustrates the paging model of memory.

frame
number
page O 0
01
page 1 1 n 1| page O
page 2 2 2
3
page 3 page table 3| page 2
logical 4| page 1
memory
5
6
7| page 3
physical
memory

Figure 5: Paging Model of Logical and Physical Memory

The page size is defined by the hardware and the size of a page is typically a power of
2, varying between 512 bytes and 16 MB per page, depending on the computer architecture. If
the size of the logical address space is 2m and a page size is 2n addressing units (bytes or
words), then the high-order m — n bits of a logical address designate the page number and the n
low-order bits designate the page offset. Thus, the logical address is as follows:

page number page offset
2 d |

mM—-H M

For example, consider the memory in Figure 6, where the logical address has n=2 and m = 4.
Using a page size of 4 bytes and a physical memory of 32 bytes (8 pages), the user’s view of
memory can be mapped into physical memory. Logical address 0 is page 0, offset 0. Indexing
into the page table, we find that page O is in frame 5. Thus, logical address 0 maps to physical

address 20 [= (5 X 4) + 0]. Logical address 3 (page 0, offset 3) maps to physical address 23 [=
(5 x 4) + 3]. Logical address 4 is page 1, offset 0; according to the page table, page 1 is
mapped to frame 6. Thus, logical address 4 maps to physical address 24 [= (6 X 4) +0].

Logical address 13 maps to physical address 9. Figure 6 also shows paging itself is a form of
dynamic relocation and every logical address is bound by the paging hardware to some

physical address.

o[=]
c

2 b a
3 2

page table

033 -F--

nionlgoalNonsunag

Vo33 |-F=-{TO «0A0TH

logical memory 16

TO=Q@ao T

physical memory

Figure 6: Paging example for a 32-byte memory with 4-byte pages

When we use a paging scheme, we have no external fragmentation, whereas if process size is
independent of page size, there internal fragmentation can be expected to average one-half
page per process. This suggests that small page sizes are desirable. However, overhead is
involved in each page-table entry, and this overhead is reduced as the size of the pages
increases. So, When a process arrives in the system to be executed, its size, expressed in pages,
is examined, since each page of the process needs one frame. Thus, if the process requires n
pages, at least n frames must be available in memory. If n frames are available, they are
allocated to this arriving process. The first page of the process is loaded into one of the
allocated frames, and the frame number is put in the page table for this process. The next page

is loaded into another frame, its frame number is put into the page table, and so on as shown in

Figure 7.
free-frame list free-frame list
14 16
13 13 13 |page 1
18
a0 14 14 |page ()
16
— B 15 o~ - _--"\. 15
e b
page 0 16 page 0 16
page 1 page 1
page 2 17 page 2 17
page 3 page 3
NEw proce New proces
a___fﬂ 18 H_h__j 18 |page 2|
19 19
20 20 |page 3
21 new-process page table 21
(a) (b)

Figure 7: Free frames (a) before allocation and (b) after allocation.

In paging user program views memory as one single space containing only one
program. But, the user program is scattered throughout physical memory, which also holds

other programs. The difference between the user’s view of memory and the actual physical

memory is reconciled by the address-translation hardware. The logical addresses are translated
into physical addresses. This mapping is hidden from the user and is controlled by the
operating system. Since the operating system is managing physical memory, it must be aware
of the allocation details of physical memory—which frames are allocated, which frames are
available, how many total frames there are, and so on. This information is generally kept in a
data structure called a frame table. The frame table has one entry for each physical page
frame, indicating whether the latter is free or allocated and, if it is allocated, to which page of
which process or processes. Thus, the operating system maintains a copy of the page table for
each process, just as it maintains a copy of the instruction counter and register contents. This is
also used by the CPU dispatcher to define the hardware page table when a process is to be
allocated to the CPU. Paging therefore increases the context-switch time.

Hierarchical Page Table

e | =t
LI]

/

/ = 100
\

500
708 b~ | -
. 708
outer page T~ 920 .
table . \\~ 900
900 f'"”>< :
page of 929
page table
page table .

memaory

Figure 8: A Two-level Page-table Scheme.

The most common techniques for structuring the page table is Hierarchical Paging.
Most modern computer systems support a large logical address space (232 to 264). In such an
environment, the page table itself becomes excessively large. For example, consider a system
with a 32-bit logical address space. If the page size in such a system is 4 KB (212), then a page
table may consist of up to 1 million entries (232/212). Assuming that each entry consists of 4
bytes, each process may need up to 4 MB of physical address space for the page table
alone. Clearly, we would not want to allocate the page table contiguously in main memory.
One simple solution to this problem is to divide the page table into smaller pieces. One way is

to use a two-level paging algorithm, in which the page table itself is also paged as Figure 8.

For example, consider the system with a 32-bit logical address space and a page size of
4 KB. A logical address divided into a page number consisting of 20 bits and a page offset
consisting of 12 bits. Because we page the page table, the page number is further divided

into a 10-bit page number and a 10-bit page offset. Thus, a logical address is as follows:

page number page offset
| i | P: d |
10 10 12

where pl is an index into the outer page table and p2 is the displacement within the page of the
inner page table. The address-translation method for this architecture is shown in Figure 9.
Because address translation works from the outer page table inward, this scheme is also known

as a forward-mapped page table.

logical address

Pi | P2 n

P4

outer page I
table d .

page of
page table

Figure 9: Address translation for a two-level 32-bit paging architecture.

For a system with a 64-bit logical address space, a two-level paging scheme is no
longer appropriate. To illustrate this point, consider the page size with 4 KB (212). In this case,
the page table has up to 252 entries. If we use a two-level paging scheme, then the inner page
tables can conveniently be one page long, or contain 210 4-byte entries. The addresses
look like this:

outer page inner page offset
| Pi P2 d |
42 10 12

The outer page table consists of 242 entries, or 244 bytes. The way to avoid such a large table
is to divide the outer page table into smaller pieces. We can divide the outer page table in
various ways, we can page the outer page table, giving us a three-level paging scheme.
Suppose that the outer page table is made up of standard-size pages (210 entries, or 212 bytes),
the 64-bit address space is still daunting:

2nd outer page = outer page | inner page offset

| Pi P Pa d |
32 10 10 12

Thus he next step would be a four-level paging scheme, where the second-level outer page

table itself is also paged, and so forth.

SEGMENTATION

Segmentation is a memory-management scheme that supports the user view of memory.
A logical address space is a collection of segments. Each segment has a name and a length. The
addresses specify both the segment name and the offset within the segment. The user therefore
specifies each address by two quantities: a segment name and an offset. This in contrast with
the paging scheme, in which the user specifies only a single address, which is
partitioned by the hardware into a page number and an offset, invisible to the programmer.
For simplicity of implementation, segments are numbered and are referred to by a segment
number, rather than by a segment name. Thus, a logical address consists of a two tuple:

<segment-number, offset>

Actually, the user program is compiled, and the compiler automatically constructs segments
reflecting the input program.

A C compiler might create separate segments for the following:

1. The code

2. Global variables

3. The heap, from which memory is allocated

4. The stacks used by each thread

5. The standard C library

Libraries that are linked in during compile time might be assigned separate segments. The
loader would take all these segments and assign them segment numbers.

Definition: Segmentation is a memory-management scheme that supports the user view of
memory, where logical address space is a collection of segments. Each segment has a name
and a leInngtshe.gTmheentaadtdiornestshees uspsecirfeyfebrosthtothoebjseecgtsmiennt

neapmreogarnadmthbeyoafftsweot -wdiitmhiennsthioensaelgamdednret.ss,

whereas the actual physical memory is still, as one-dimensional sequence of bytes. Thus, we
define an implementation to map two dimensional user-defined addresses into one-dimensional
physical addresses. This mapping is effected by a segment table. Each entry in the segment
table has a segment base and a segment limit. The segment base contains the starting physical
address where the segment resides in memory, and the segment limit specifies the length of the
segment. The use of a segment table is illustrated in Figure 9.

-

——— S+
"" - -
— limit |base —

segment
table

CPU —b{S d

r
v
\}’ES e

—{ < +

O

L J

no

trap: addressing error physical memory

Figure 9: Segmentation Hardware

A logical address consists of two parts: a segment number, s, and an offset into that
segment, d. The segment number is used as an index to the segment table. The offset d of
the logical address must be between 0 and the segment limit. If it is no within the limit the
operating system concludes that the logical addressing attempts to trap beyond end of segment.
When an offset is legal, it is added to the segment base to produce the address in physical
memory of the desired byte. Thus the segment table is an array of base—limit register pairs. The
Figure 10 shows five segments numbered from 0 through 4. The segments are stored in
physical memory as shown Figure 10. The segment table has a separate entry for each segment,
giving the beginning address of the segment in physical memory (or base) and
the length of that segment (or limit). For example, segment 2 is 400 bytes long and begins at
location 4300. Thus, a reference to byte 53 of segment 2 is mapped onto location 4300 + 53 =
4353. A reference to segment 3, byte 852, is mapped to 3200 (the base of segment 3) + 852 =
4052. A reference to byte 1222 of segment 0 would result in a trap to the operating system, as

this segment is only 1,000 bytes long.

subrouting stack
1400
| segment 3 | lsagment O
' \ 2400
symbaol
sagment 0 table
limit | base
= sagment 4 0| 1000 | 1400
St
| [1| 400 |00 | 3200
\ main | 2| 400 | 4300
L program ! 3| 1100 | 3200 segment 3
4| 1000 | 4700
segment table
segment 1 sagment 2 g 4300 =
4700
logical address space lsagment 4
5700
85300
[zegment 1
§700

physical memory

Figure 10: Example of Segmentation

Virtual Memory

The instructions which must be executed must be in physical memory. The ability to
execute a program that is only partially in memory can have many benefits:
(i) A program will no longer need to have a constrain by the amount of physical memory that is
available and also the users can write programs for an extremely large virtual address space, by
simplifying the programming task.
(ii) Because each user program could take less physical memory, more programs could be run
at the same time, with increase in CPU utilization and throughput. But this will not increase

response time or turnaround time.

Definition: Virtual memory is a technique that allows the execution of processes that are not
completely in memory. Virtual memory also allows processes to share files easily and to

implement shared memory.

 Less 1/0 will be needed to load or swap user programs into memory, so that each user
program will run faster. Thus, running a program that is not entirely in memory would benefit

both the system and the user.

page 0
pags 1
pags 2 T
__._‘_‘____.__ﬂ_,.f
—
| gEo
N ERS
. O O O
' = 0 0 @
O O
mﬁ'ﬂrgg”' -
page v physical
virtual memerny
memory

Figure 11: Virtual Memory that is Larger than Physical Memory

Virtual memory involves the separation of logical memory as perceived by users from

physical memory. This separation allows an extremely large virtual memory to be provided for

programmers when only a smaller physical memory is available as shown in Figure 11. Virtual
memory makes the task of programming much easier, because the programmer no longer needs
to worry about the amount of physical memory available; she can concentrate instead on the

problem to be programmed.

The virtual address space of a process refers to the logical (or virtual) view of how a
process is stored in memory. This view of a process begins at a certain logical address—say,
address 0—and exists in contiguous memory, as shown in Figure 12, where the physical
memory is organized in page frames and the physical page frames that are assigned to a
process may not be contiguous. In Figure 12 the heap is allowed to grow upward in memory as
used for dynamic memory allocation. Similarly, the stack is allowed to grow downward in
memory through successive function calls. The large blank space (or hole) between the heap
and the stack is part of the virtual address space will require actual physical pages only if the
heap or stack grows. Virtual address spaces that include holes are known as sparse address
spaces. Using a sparse address space is beneficial because the holes can be filled as the stack

or heap segments grow or if we wish to dynamically link libraries during program execution.

Max

stack

neap

data

coda

o

Figure 12: Virtual Address Space
In addition to separating logical memory from physical memory, virtual memory allows files
and memory to be shared by two or more processes through page sharing. This leads to the
following benefits:

(i) System libraries can be shared by several processes through mapping of the shared object
into a virtual address space. Although each process considers the shared libraries to be part of
its virtual address space, the actual pages where the libraries reside in physical memory are
shared by all the processes as shown in Figure 13.

(ii) Similarly, virtual memory enables processes to share memory. Virtual memory allows one
process to create a region of memory that it can share with another process. Processes sharing
this region consider it as a part of their virtual address space, yet the actual physical

pages of memory are shared, as illustrated in Figure 13.

(iii) Virtual memory also allows pages to be shared during process creation with the fork()

system call, thus speeding up process creation.

stack stack
) shared .
shared library pages shared library
heap heap
data data
code code

Figure 13: Shared library using virtual memory.

DEMAND PAGING
An executable program must be loaded from disk into memory. One option is to load
the entire program in physical memory at program execution time. Loading the entire program
into memory results in loading the executable code for all options, regardless of whether an
option is ultimately selected by the user or not. An alternative strategy is to load pages only as
they are needed. This technique is known as demand paging and is commonly used in virtual

memory systems.

With demand-paged virtual memory, pages are loaded only when they are demanded
during program execution. Pages that are never accessed are never loaded into the physical

memory. A demand-paging system is similar to a paging system with swapping as shown in

Figure 14. When we want to execute a process, we swap it into memory. Rather than swapping
the entire process into memory. This is known as lazy swapper.

— | swap out o] 107 27 37

A ar] 503 60 703
J s8] o[Ho[J11[]
7 12 13[4 15[]

rograrm
pred "™ swap in 16 J17 18119]
y 20[J21[J22[J23[]

main
MEmory

Figure 14: Transfer of a paged memory to contiguous disk space

A lazy swapper never swaps a page into memory unless that page will be needed. A
swapper is used to manipulate the entire processes, whereas a pager is concerned with the
individual pages of a process. Thus use pager, rather than swapper, in connection with demand
paging. When a process is to be swapped in, the pager guesses which pages will be used before
the process is swapped out again. Instead of swapping in a whole process, the pager brings only
those pages into memory. Thus, it avoids reading into memory pages that will not be used
anyway, decreasing the swap time and the amount of physical memory needed. For this
purpose, the valid—invalid bit scheme is used. When this bit is set as “valid,” the associated
page is both legal and in memory. If the bit is set as “invalid,” the page either is not valid or is

valid but is currently on the disk.

The page-table entry for a page that is brought into memory is set as usual, but the
page-table entry for a page that is not currently in memory is either marked invalid or contains
the address of the page on disk. This situation is depicted in Figure 15. Thus marking a page
invalid will have no effect if the process never attempts to access that page. Hence, only those
pages that are actually needed, will be brought in the memory and then the process will run

exactly as though we had brought in all pages. While the process executes and accesses pages

that are memory resident, execution proceeds normally.

—, page is on
—/ backing store

operating
gystem
©
reference
- trap
|'r‘|\'-
Ay
load M |« - | | [—
o
\8)
restart page table
instruction
free frame [« e e
P N —
\B) &)
reset page bring in
table missing page
physical

memaory

valid—invalid [

[
I | @|m|m|DO|0|m| =

of 4
T) O OO
21 8
! ST o| ¢] [& [E]
5 al |
9 |w ! IE
i
i

= M

al F
logical page table 10
MEemory |:| |:| |:|

11

12

13

14

15

physical memaory

Figure 15: Page Table when some pages are not in main memory.

If the process tries to access a page that is not in the memory, access to that page is
marked as invalid thus causing a page fault. The paging hardware, in translating the address
through the page table, will notice that the invalid bit is set, causing a trap to the operating
system. This trap is the result of the operating system’s failure to bring the desired page into

memory.

Definition: Accessing the page that is not currently in memory for execution is called as Page
Fault.

The figure 16 shows the procedure for handling this page fault as follows,

1. Checks an internal table usually kept with the process control block to determine whether the
reference has a valid or an invalid memory access.

2. If the reference is invalid, the process will be terminate. If it is valid, and the page is not yet

brought in the memory, then the page is brought in.

— page is on
=/ backing store

operating
system
@
reference
_ trap
|'r‘| -\'-
S
load M |« - | [
N
\8)
restart page table
instruction
free frame [+ e _— e
()) T
&/ \&)
reset page bring in
table missing page
physical
Mmemaory

Figure 16: Steps in handling a page fault.

3. Finds a free frame by taking one from the free-frame list.

4. Schedules a disk operation to read the desired page into the newly allocated frame.

5. When the disk read is complete, the internal table is modified. The process and the page
table is modified to indicate that the page is in memory.

6. The instruction that was interrupted by the trap is restarted. The process access the page as
though it had always been in memory.

In the extreme case, the execution of a process starts with no pages in memory. When
the operating system sets the instruction pointer to the first instruction of the process, which is
on a non-memory-resident page, the process immediately faults for the page. After which the
page is brought into memory, to continue the execution. At this point, process executes with no
more faults. This scheme is pure demand paging, which never brings a page into memory
until it is required.

A page fault may occur at any memory reference. If the page fault occurs on the
instruction fetch, we can restart by fetching the instruction again. If a page fault occurs while
we are fetching an operand, we must fetch and decode the instruction again and then fetch the
operand. As a worst-case example, consider a three-address instruction such as ADD the
content of A to B, placing the result in C. These are the steps to execute this instruction:

1. Fetch and decode the instruction (ADD).
2. Fetch A.

3. Fetch B.

4. Add A and B.

5. Store the sumin C.

If we fault when we try to store in C page not currently in memory, we will have to get
the desired page, bring it in, correct the page table, and restart the instruction. The restart will
fetch the instruction again, decoding it again, fetching the two operands again, and then adding
again. However, there is not much repeated work (less than one complete instruction), and the
repetition is necessary only when a page fault occurs.

The major difficulty arises when one instruction may modify several different locations.
This problem can be solved in two different ways. In one solution, the microcode computes
and attempts to access both ends of both blocks. If a page fault is going to occur, it will happen
at this step, before anything is modified. The move can then take place; we know that no page
fault can occur, since all the relevant pages are in memory. The other solution uses temporary
registers to hold the values of overwritten locations. If there is a page fault, all the old values
are written back into memory before the trap occurs. This action restores the memory to its

state before the instruction was started, so that the instruction can be repeated.

PERFORMANCE OF DEMAND PAGING
Demand paging can significantly affect the performance of a computer system. To see
why, let’s compute the Effective Access Time for a demand-paged memory. For most
computer systems, the memory-access time, denoted ma,ranges from 10 to 200 nanoseconds.
As long as we have no page faults, the effective access time is equal to the memory access
time. If, a page fault occurs, we must first read the relevant page from disk and then access the

desired word. Let p be the probability of a page fault (0 < p £ 1). We would expect p to be close

to zero—that is, we would expect to have only a few page faults. The Effective Access Time is
calculated as,

Effective Access Time = (1—p) X ma+p X page fault time.

TRANSLATION LOOK-ASIDE BUFFER

Operating system has its own methods for storing page tables and allocating a page
table for each process. A pointer to the page table is stored with the other register values (like
the instruction counter) in the process control block. When the dispatcher is told to start a
process, it must reload the user registers and define the correct hardware page-table values
from the stored user page table. The hardware implementation of the page table can be done in
several ways. In the simplest case, the page table is implemented as a set of dedicated
registers, with very high-speed logic to make the paging-address translation efficient. The
CPU dispatcher reloads these registers, just as it reloads the other registers. Instructions to load
or modify the page-table registers are, of course, privileged, so that only the operating system
can change the memory map. The page table kept in main memory, and a Page-Table
Base Register (PTBR) points to the page table. Changing page tables requires changing only
this one register, substantially reducing context-switch time.

The problem with this approach is the time required to access a user memory location.
If we want to access location i, we must first index into the page table, using the value in the
PTBR offset by the page number for i. This task requires a memory access. It provides us with
the frame number, which is combined with the page offset to produce the actual address, to
access the desired place in memory.With this scheme, two memory accesses are needed to
access a byte (one for the page-table entry, one for the byte). Thus, memory access is slowed
by a factor of 2. This delay would be intolerable under most circumstances. We might as well
resort to swapping! The standard solution to this problem is to use a special, small, fast lookup
hardware cache, called a Translation Look-Aside Buffer (TLB). The TLB is associative,
high-speed memory. Each entry in the TLB consists of two parts: a key (or tag) and a value.
When the associative memory is presented with an item, the item is compared with all keys
simultaneously. If the item is found, the corresponding value field is returned. The search is
fast; the hardware, however, is expensive. Typically, the number of entries in a TLB is small,

often numbering between 64 and 1,024.

logical

address
CPU |+~ p | d

page frame
number number
,Eg TLE hit physical
E i i address
Lf[dl—
TLB 1
| —
TLE miss L
- f
physical
memaory
page table

Figure 17: Paging Hardware with TLB.

The TLB is used with page tables in the following way, the TLB contains only a few of
the page-table entries. When a logical address is generated by the CPU, its page number is
presented to the TLB. If the page number is found, its frame number is immediately available
and is used to access memory. The whole task may take less than 10 percent longer, if an
unmapped memory reference were used. If the page number is not in the TLB (known as a
TLB miss), a memory reference to the page table must be made. When the frame number is
obtained, we can use it to access memory as shown in figure 17. In addition, we add the page
number and frame number to the TLB, so that the next reference can be found quickly. If the
TLB is already full of entries, the operating system must select one for replacement.
Replacement policies range from least recently used (LRU) to random. Some TLBs store

address-space identifiers (ASIDs) in each TLB entry.

An ASID uniquely identifies each process and is used to provide address-space
protection for that process. When the TLB attempts to resolve virtual page numbers, it ensures
that the ASID for the currently running process matches the ASID associated with the virtual
page. If the ASIDs do not match, the attempt is treated as a TLB miss. In addition to providing

address-space protection, an ASID allows the TLB to contain entries for several different

processes simultaneously. If the TLB does not support separate ASIDs, then every time a new
page table is selected with each context switch, and the TLB must be flushed (or erased) to
ensure that the next executing process does not use the wrong translation information.
Otherwise, the TLB could include old entries that contain valid virtual addresses but have
incorrect or invalid physical addresses left over from the previous process. The percentage of

times that a particular page number is found in the TLB is called the hit ratio.

An 80-percent hit ratio, for example, means that we find the desired page number in the
TLB 80 percent of the time. If it takes 20 nanoseconds to search the TLB and 100 nanoseconds
to access memory, then a mapped-memory access takes 120 nanoseconds when the page
number is in the TLB. If we fail to find the page number in the TLB (20 nanoseconds), then we
must first access memory for the page table and frame number (100
nanoseconds) and then access the desired byte in memory (100 nanoseconds), for a total of 220
nanoseconds. To find the Effective Memory-Access Time, we weight the case by its
probability:

Effective Access Time = 0.80 x 120 + 0.20 X 220 = 140 nanoseconds.

In this example, we suffer a 40-percent slowdown in memory-access time.

4.10 INVERTED PAGE TABLES

The purpose of this form of page management is to reduce the amount of physical
memory needed to track virtual-to-physical address translations. We accomplish this savings
by creating a table that has one entry per page of physical memory, indexed by the pair,

<process-id, page-number>
the information about which virtual memory page is stored in each physical frame, reduces the
amount of physical memory needed to store the information in the inverted page tables. Also,
the inverted page table no longer contains complete information about the logical address space
of a process, and the information required if a referenced page is not currently in memory.
Demand paging requires this information to process page faults. For the information to be
available, an external page table (one per process) must be maintained. Each such table looks
like the traditional per-process page table and contains information on where each virtual page

is located. Since these tables are referenced only when a page fault occurs, they do not need to

be available quickly. Instead, they are themselves paged in and out of memory as necessary.
Unfortunately, a page fault may now cause the virtual memory

manager to generate another page fault as it pages is in the external page table and it needs to
locate the virtual page on the backing store. This special case requires careful handling in the

kernel and a delay in the page-lookup processing.
PAGE REPLACEMENT

Page replacement takes the following approach. If no frame is free, we find one that is
not currently being used and free it. We can free a frame by writing its contents to swap space
and changing the page table and all other tables to indicate that the page is no longer in
memory Figure 18.

frame valid—invalid bit

b /”’ =

swap out
1.2 10 invalid page
0 i O Invall @ |
|\ .
(9 | victim T
reset page \
table for
page table G\
new page \3) S \
desired 1
page in
\5____ . o
physical
memory

Figure 18: Page replacement.
We can now use the freed frame to hold the page for which the process faulted. We modify the
page-fault service routine to include page replacement:
1. Find the location of the desired page on the disk.
2. Find a free frame:

a. If there is a free frame, use it.

b. If there is no free frame, use a page-replacement algorithm to select a victim frame.
c. Write the victim frame to the disk; change the page and frame tables accordingly.
3. Read the desired page into the newly freed frame; change the page and
frame tables.
4. Restart the user process.
Also, if no frames are free, two page transfers (one out and one in) are required. This situation
effectively doubles the page-fault service time and increases the effective access time
accordingly. This overhead can be reduced by using a modify bit (or dirty bit). The modify bit
for a page is set by the hardware whenever any word or byte in the page has been modified.
When we select a page for replacement, we examine its modify bit. If the bit is set, it means
that the page has been modified since it was read in from the disk. In this case, we must write
the page to the disk. If the modify bit is not set, however, the page has not been modified since
it was read into memory. In this case, we need not write the memory page to the disk: it is
already there. This technique also applies to read-only pages and such pages cannot be
modified; they may be discarded when desired. This scheme can significantly reduce the time
required to service a page fault, since it reduces 1/0 time by one-half if the page has not been
modified.

Page replacement is basic to demand paging. It completes the separation between

logical memory and physical memory. If a page that has been modified and it is to be replaced,
its contents are copied to the disk, after replacement the reference to that page will cause a page
fault. At that time, the page will be brought back into memory, perhaps replacing some other
page in the process. perhaps replacing some other page in the process.
To solve this two major problems to implement demand paging, we must develop a frame-
allocation algorithm and a page-replacement algorithm. That is, if we have multiple
processes in memory, we must decide how many frames to allocate to each process; when page
replacement is required, and also select the frames that are to be replaced. There are many
different page-replacement algorithms. Every operating system probably has its own
replacement scheme.

In general, if we want to replace a page, we must select the one with the lowest page-
fault rate. We evaluate an algorithm by running it on a particular string of memory references

and computing the number of page faults. The string of memory references is called a

reference string. Several page-replacement algorithms are illustrated with the following
reference string
7,01,2030,4,23,03,21,201,7,0,1

for a memory with three frames.

FIFO PAGE REPLACEMENT

The simplest page-replacement algorithm is a First-In, First-Out (FIFO) algorithm. A
FIFO replacement algorithm associates with each page the time when that page was brought
into memory. When a page must be replaced, the oldest page is chosen. We replace the page at
the head of the queue. When a page is brought into memory, we insert it at the tail of the
queue. For our example reference string, our three frames are initially empty. The first three
references (7, 0, 1) cause page faults and are brought into these empty frames. The next
reference (2) replaces page 7, because page 7 was brought in first. Since 0 is the next reference
and 0 is already in memory, we have no fault for this reference. The first reference to 3 results
in replacement of page 0, since it is now first in line. Because of this replacement, the next
reference, to 0, will fault. Page 1 is then replaced by page 0. This process continues as shown
in Figure 19. Every time a fault occurs, we show which pages are in our three

frames. There are fifteen faults altogether.

o 3 0 4 2 3 0 3 2
2| 2| 4] [4] [4] |o]
1] o] [o] [o] [3] [3

Figure 19: FIFO page-replacement algorithm

reference string

70 1 2 1 2 0 1 7 0 1

page frames

The FIFO page-replacement algorithm is easy to understand and program. However, its

performance is not always good. If we select for replacement a page that is in active use,

everything still works correctly. After we replace an active page with a new one, a fault occurs

almost immediately to retrieve the active page. Thus, a bad replacement choice increases the

page-fault rate and slows process execution. To illustrate the problems that are possible with a

FIFO page-replacement algorithm, we consider the following reference string:
1,2,3,4,1,2,5/1,2,3,4,5

which results as Figure 20, with the number of faults for four frames as ten that is greater than
the number of faults for three frames which is nine. This unexpected result is known as
Belady’s anomaly. (i.e) the page-fault rate may increase as the number of allocated frames

increases.

—_ —_ —_ —
= Mo = a0
I I I I

number of page faults

1 2 3 4 5 6 T
number of frames

Figure 20: Page-fault curve for FIFO replacement on a reference string
OPTIMAL PAGE REPLACEMENT

An optimal page-replacement algorithm, which has the lowest page-fault rate of all
algorithms and will never suffer from Belady’s anomaly. This algorithm is called as OPT or
MIN. The policy of Optimal Page Replacement is.

Replace the page that will not be used

for the longest period of time.
Use of this page-replacement algorithm guarantees the lowest possible page fault rate for a
fixed number of frames. For example, on our sample reference string, the optimal page-
replacement algorithm would yield nine page faults, as shown in Figure 21. The first three
references cause faults that fill the three empty frames. The reference to page 2 replaces page 7,
because page 7 will not be used until reference 18, whereas page 0 will be used at 5, and page 1

at 14. The reference to page 3 replaces page 1, as page 1 will be the last of the three pages in

memory to be referenced again. With only nine page faults, optimal replacement is much better
than a FIFO algorithm, which results in fifteen faults. Unfortunately, the optimal page-
replacement algorithm is difficult to implement, because it requires future knowledge of the
reference string.

reference string

7 01 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

page frames

Figure 21: Optimal Page-Replacement Algorithm

LRU PAGE REPLACEMENT

If the optimal algorithm is not feasible, an approximation of the optimal algorithm is
possible. The difference between the FIFO and OPT algorithms is that the FIFO algorithm uses
the time when a page was brought into memory, whereas the OPT algorithm uses the time
when a page is to be used. If we use the recent past as an approximation of the near future, then
we can replace the page that has not been used for the longest period of time. This approach is
the least-recently-used (LRU) algorithm. LRU replacement associates with each page the
time of that page’s last use. When a page must be replaced, LRU chooses the page that has not
been used for the longest period of time. The result of applying LRU replacement to our

example reference string is shown in Figure 22.

0] o]

Figure 22: LRU page-replacement algorithm

reference string

page frames

The LRU algorithm produces twelve page faults. The first five faults are the same as those for
optimal replacement. When the reference to page 4 occurs, the LRU replacement sees that, out
of the three frames in memory, page 2 was used least recently. Thus, the LRU algorithm
replaces page 2, without knowing that page 2 is about to be used. When faults for page 2
occurs the LRU algorithm replaces page 3, since it is now the least recently used of the three
pages in memory.

Despite these problems, LRU replacement with twelve faults is much better than FIFO

replacement with fifteen page fault. The LRU policy is often used as a page-replacement
algorithm and is considered to be good. The major problem is how to implement LRU
replacement. An LRU page-replacement algorithm may require hardware assistance. Two
implementations are feasible for LRU page-replacement:
(i) COUNTERS: We associate with each page-table entry a time-of-use field and add to the
CPU a logical clock or counter. The clock is incremented for every memory reference.
Whenever a reference to a page is made, the contents of the clock register are copied to the
time-of-use field in the page-table entry for that page. We replace the page with the smallest
time value. This scheme requires a search of the page table to find the LRU page and a write to
memory the time-of-use field in the page table for each memory access. The times must also be
maintained when page tables are changed due to CPU scheduling. Here, overflow of the clock
must be considered.

reference string

4 7 o0 7 1 0 1 2 1 2 7 1 2

a b
1 2
0 1
7 0
4 4
stack stack
hefore after
zl b

Figure 22: Use of a stack to record the most recent page references

(i) STACK: Another approach to implementing LRU replacement is to keep a stack of page
numbers. Whenever a page is referenced, it is removed from the stack and put on the top. In
this way, the most recently used page is always at the top of the stack and the least recently
used page is always at the bottom as shown in Figure 22. Because entries must be removed
from the middle of the stack, it is best to implement this approach by using a doubly linked list
with a head pointer and a tail pointer. Removing a page and putting it on the top of the stack
then requires changing six pointers at worst, more expensive, but there is no search for a
replacement; the tail pointer points to the bottom of the stack, which is the LRU page. This
approach is particularly appropriate for software or microcode implementations of LRU
replacement. Like optimal replacement, LRU replacement does not suffer from Belady’s
anomaly. Both belong to a class of page-replacement algorithms, called stack algorithms, that

can never exhibit Belady’s anomaly.
LRU-APPROXIMATION PAGE REPLACEMENT

The basis for many page-replacement algorithms that approximate LRU replacement is to
execute a user process where, the bit associated with each page referenced is set (to 1) by the
hardware. After some time, we can determine which pages have been used and which have not

been used by examining the reference bits, although we do not know the order of use.
ADDITIONAL-REFERENCE-BITS ALGORITHM

The additional ordering information by recording the reference bits at regular intervals
can maintain an 8-bit byte for each page in a table in memory. At regular intervals the
operating system shifts the reference bit for each page into the high-order bit of its 8-bit byte,
shifting the other bits right by 1 bit and discarding the low-order bit. These 8-bit shift registers
contain the history of page use for the last eight time periods. If the shift register contains
00000000, then the page has not been used for eight time periods. And a page that is used at
least once in each period will have a shift register value of 11111111. If we interpret these 8-bit
bytes as unsigned integers, the page with the lowest number is the LRU page can be replaced.
We can replace by swapping out all pages with the smallest value by using FIFO method to
choose among them. In the extreme case, the number can be reduced to zero, leaving only the

reference bit itself. This algorithm is called the second-chance page-replacement algorithm.

SECOND-CHANCE ALGORITHM

The basic algorithm of second-chance replacement is a FIFO replacement algorithm.
When a page has been selected, however, we inspect its reference bit. If the value is 0, we
proceed to replace this page; but if the reference bit is set to 1, we give the page a second
chance and move on to select the next FIFO page. When a page gets a second chance, its
reference bit is cleared, and its arrival time is reset to the current time. Thus, a page that is
given a second chance will not be replaced until all other pages have been replaced or given a
second chances. One way to implement the second-chance algorithm is to have a reference to
the clock algorithm as a circular queue. A pointer that is on the clock will indicate which page
is to be replaced next. When a frame is needed, the pointer advances until it finds a page with a
0 reference bit. As it advances, it clears the reference bits as in Figure 23. Once a victim page is
found, the page is replaced, and the new page is inserted in the circular queue in that

reference pages reference pages
bits bits
o] [o]
v v
o] [o]
v v
(t
o]
v v
[o]
¥ ¥
[o] ==>{ 0|
¥ v
circular queue of pages circular queue of pages

(a) (b)

Figure 23: Second-Chance (Clock) Page-Replacement Algorithm

position. The worst case is when all bits are set in the pointer cycles, the whole queue gives
each page a second chance. It clears all the reference bits before selecting the next page for
replacement. Second-chance replacement degenerates to FIFO replacement if all bits are set.

ENHANCED SECOND-CHANCE ALGORITHM

Enhanced second-chance algorithm considers the reference bit and the modify bit in an
ordered pair. With these two bits, we have the following four possible classes:
1. (0, 0) neither recently used nor modified, it is best page to replace.
2. (0, 1) not recently used but modified, it is not good to replace because the page is
needed to be written out before replacement.
3. (1, 0) recently used but clean, it can probably be used again soon.
4. (1, 1) recently used and modified, it will probably be used again soon, and the page will
be need to be written out to disk before it can be replaced.
Each page is in one of these four classes. When page replacement is called, the same scheme as
in the clock algorithm; will examine whether the page to which we are pointing has the
reference bit set to 1 and scan the circular queue several times before we find a page to be
replaced. The major difference between this algorithm and the simpler clock algorithm is that
here we give preference to those pages that have been modified to reduce the number of 1/0Os

required.
COUNTING-BASED PAGE REPLACEMENT

There are many other algorithms that can be used for page replacement. For example,
we can keep a counter of the number of references that have been made to each page and
develop the following two schemes.

(i) The Least-Frequently-Used (LFU) page-replacement algorithm requires that the page
with the smallest count be replaced. The reason for this selection is that an actively used page
should have a large reference count. A problem arises, however, when a page is used heavily
during the initial phase of a process but then is never used again. Since it was used heavily,

it has a large count and remains in memory even though it is no longer needed. One solution is
to shift the counts right by 1 bit at regular intervals, forming an exponentially decaying average

usage count.

(i) The Most-Frequently-Used (MFU) page-replacement algorithm is based on the

argument that the page with the smallest count is just brought in and has yet to be used. As you

expect, neither MFU nor LFU replacement is common. The implementation of these

algorithms is expensive, and they do not approximate OPT replacement well.

2 Marks:

1. Differentiate internal and external fragmentation.

Questions and Answers:

Internal fragmentation: Memory that is internal to a partition but not being used

External fragmentation: Total memory space exists to satisfy a request, but it is not

contiguous.

2. What is meant by Paging? Give its advantages.

Paging is a Memory-management scheme that permits the physical -address space of a

process to be Non-contiguous.

Advantages: (i) Avoids the considerable problem of fitting the varying-sized memory

chunks onto the backing store. (ii) Fragmentation problems are also prevalent backing

store, except that access is much slower, so compaction is impossible.

3. What is meant by Locality of reference?

During any phase of execution, the page references only a relative small fraction of its

pages. This reference of fraction of all pages is called as Locality of Reference.

4. Differentiate Segmentation and Paging storage.

S. No. | Segmentation Paging
1. The physical memory is breaking | The physical memory is breaking into
into variable-sized blocks called | fixed-sized blocks called frames and
segments. logical memory is breaking into blocks
of the same size called pages.
2. Address generated by CPU is | Address generated by CPU is divided as
divided into segment number (S) | Page number (p) and Page offset (d).

and segment offset (d).

3. Physical address = segment base + | Physical address = page size * frame

offset number + offset

4. Has external fragmentation No external fragmentation

. What is meant by Page Fault?
Whenever memory management unit accessing the page that are not in the memory is

called as Page Fault.

. What is meant by Swapping?
It is a process of bringing in each process in its entirety, running it for a while, then
putting it back on the disk.

. What is meant by Memory Compaction?
When swapping creates multiple holes in memory, it is possible to combine them all

into one big by moving all the processes downward as far as possible.

. What is demand paging?
Swapping a page into the memory, when we want to execute a process. Also called as
Lazy swapper because the page is brought into the memory on demand

Define the virtual memory? What are its advantages?
Virtual memory is a technique that allows the execution of processes that are not
completely in memory.
Advantages:
o Enables users to run programs that are larger than actual physical memory.
¢ VM makes the task of programming much easier.
¢ Virtual memory allows processes to share files easily and to implement shared
memory.

e It provides an efficient mechanism for process creation.

10. How can measure the performance of demand paging?
To measure the demand paging , the effective access time for a demand —paged
memory is calculated by:
Effective access time = (1 — p) x ma + p x page fault time
Where, p: The probability of page fault, 0 <p <1,

ma: Memory access time , ranges from 10 to 200 nanosecond.

11. How can the system distinguish between the pages that are in main memory from the
pages that are on the disk?
The system uses valid-invalid bit is used. This bit is set to "valid" when the page in

memory, while it set to "invalid" when the page either not valid or is the page is valid

but is on the disk, as in the following figure.

el A Valid-Invalid bit ~ © /_\

1 B Frame # 1

2| ¢ - \/
0l 4| v 3

3| o 1 ' Jm

T e e (O
3 i 7

T s =]y =

ol F

Logical 4 b v l:‘ D

Memory $ ' Physical
7 ' Mamory Disk Space

12. What are the differences between pager and swapper?

S. No. Pager Swapper
1. Pager Swaps a page into memory | Swapper swaps the entire processes
when this page will be needed into memory
into memory.

2. It use in demand-paging system It uses in paging system

Answer in detail
1. Discuss in detail paging.
Hints: Paging definition, Basic method-page, frame, page table, page offset and page
number, Paging hardware diagram, TLB with diagram, Protection bits and valid/invalid
bits.

2. Bring out a detailed study on Segmentation.
Hints: User view of program; Segmentation definition; Hardware - with diagram;

Protection and sharing with diagram; Fragmentation

3. Discuss in brief about Demand paging.
Hints: Definition: Lazy Swapper, Explanation : Page Fault, Page Fault Trap, Example,
Effective Access Time

4. What are the steps to modify the page-fault service routine to include page
replacement?

Step 1. Find the location of the desired page on the disk.
Step 2. Find a free frame:
a) If there is a free frame, use it.
b) If there are no free frames, use a page-replacement algorithm to select a
victim frame.
c) Write the victim frame to the disk, change the pages table.
Step 3. Read the desired page and store it in the free frame. Adjust the page table.

Step 4. Restart the user process.

5. Explain in detail the various page replacement strategies.
Hints: Page replacement basic scheme with diagram; FIFO page replacement; optimal
page replacement; LRU page replacement; LRU approximation page replacement;

Counting-based page replacement; Page buffering algorithm.

PROBLEMS:

1 Calculate the size of memory if its address consists of 22 bits and the memory is 2-byte
addressable.

Solution:

Given,

« Number of locations possible with 22 bits = 222 locations

e It is given that the size of one location = 2 bytes_
Formula: Size of memory = 2" x Size of one location.

Thus, Size of memory = 222 x 2 bytes= 22 bytes = 8 MB

2. Suppose that we have free segments with sizes: 6, 17, 25, 14, and 19. Place a program with
size 13KB in the free segment using first-fit, best-fit and worst fit?

Solution:

os

First —fit In use
| > 17
13K In use
request IJ[M_p 25

In use
Best - fit ol 14

In use
19

2. Consider a system with byte-addressable memory, 32 bit logical addresses, 4 kilobyte page
size and page table entries of 4 bytes each. The size of the page table in the system in

megabytes is .
Formula:

(1) Size of page table = Number of entries in page table x Page table entry size

(it) Number of entries in pages table = Number of pages the process is divided

(iii) Page table entry size = Number of bits in frame number + Number of bits used for

optional fields, if any
Given

- Number of bits in logical address = 32 bits
- Page size = 4KB
- Page table entry size = 4 bytes

Process Size:

Number of bits in logical address = 32 bits

Thus, Process size = 2% B = 4 GB

Number of Entries in Page Table:

Number of pages the process is divided = Process size / Page size = 4 GB / 4 KB = 2?° pages

Thus, Number of entries in page table = 2%° entries
Page Table Size:

Page table size = Number of entries in page table x Page table entry size
=220 x 4 bytes =4 MB

3. Assume an average page-fault service time is 25 milliseconds and a memory access time is
100 nanoseconds. Find the Effective Access Time?
Effective Access Time (EAT)= (1 - p) x (ma) + p x (page fault time)
=(1-p) x 100 + p x 25,000,000
=100 - 100 x p + 25,000,000 x p

4. Consider a program consists of 5 segments: SO = 600, S1 = 14 KB, S2= 100 KB, S3 =580
KB, and S4 = 96 KB. Assume at that time, the available free space partitions of memory are
1200-1805, 50 — 150, 220-234, and 2500-3180.

Find the following:

a. Allocate space for each segment in memory?

b. Calculate the external fragmentation and the internal fragmentation?

c. What are the addresses in physical memory for the following logical addresses:
(i) 0.580, (ii) 1.17 (iii) 2.66 (d) 3.82 (iv) 4.20?

Solution for a:

Logical map

50 2 Segment | Limit Base

o | Wl Wi
160 X
220 | S1 14 220

S a

\ S2 100 50

234 :
250 \ S3 580 2500
1200 S0 \ S4 96 3080
1805 — {',
2500 -)

S3 \ | Segment table
3080 \|

S4 \ :
37° | Internal fragmentation

Physical memory

Solution for b:

External Fragmentation =0.

Internal Fragmentation = (160-150) +(1805-1800) + (3180-3176)
=10+5+4=19

Fragmentation = External Fragmentation + Internal Fragmentation =0 + 19 = 19

Solution for c:

The physical addresses are

(i) 0.580------ the physical address of 0.580 = 1200+580 = 1780.

(i) 1.17 ----- Since d > limit of S1, the address is wrong.

(iii) 2.66 ----- the physical address of 2.66= 50 + 66 = 116

(iv) 3.82 ----- the physical address is of 3.82 is = 2500 + 82 = 2582

(v) 4.20 ----- the physical address 4.20 = 3080+20 = 3100

5. Consider the following page reference using three frames that are initially empty. Find the
page faults using FIFO algorithm, where the page reference sequence: 7,0,1,
2,0,3,04,2,3,0,3,2,1,2,0,1,7,0,1?

Solution:

7/0|1(210|3(0)41|2(3|0(3(2(1(2|0 1|7 |01
71717101011 (2131041212123 |01|0(0 |1 |2 |7
Ojoj11112131014121313131011 1111121710
1121213104123 (0(01]0 |1 (212127 |0 |2

% ‘*\ * *V\\ * ¥ * * 4 * = * * __’,.:—-"’)"""1 *

Page fault
The page fault = 15.

. Let the page fault service time be 10 ms in a computer with average memory access time
being 20 ns. If one page fault is generated for every 10° memory accesses, what is the
Effective Access Time for the memory?

Solutions:
Given-
o Page fault service time = 10 ms
o Average memory access time = 20 ns
« One page fault occurs for every 10® memory accesses
Page Fault Rate:
- It is given that one page fault occurs for every 10° memory accesses.
Thus, Page fault rate = 1/ 108 = 10
Effective Access Time (EAT) with Page Fault:
It is given that effective memory access time without page fault = 20 ns.
Now, substituting values in the above formula,
we get,
EAT with page fault =10%x {20 ns+10ms } + (1-10%)x {20 ns }
=10%x 10 ms + 20 ns
=10°ms + 20 ns
=10ns+20ns
=30ns

7. Consider a system with a two-level paging scheme in which a regular memory access takes
150 nanoseconds and servicing a page fault takes 8 milliseconds. An average instruction
takes 100 nanoseconds of CPU time and two memory accesses. The TLB hit ratio is 90%
and the page fault rate is one in every 10,000 instructions. What is the effective average
instruction execution time?

Solutions:

Given,
- Number of levels of page table =2
- Main memory access time = 150 ns
- Page fault service time = 8 msec
- Average instruction takes 100 ns of CPU time and 2 memory accesses
- TLB Hit ratio = 90% = 0.9
- Page fault rate = 1/ 10* = 10*

Assume TLB access time = 0 since it is not given in the question.

Also, TLB access time is much less as compared to the memory access time.

Effective Access Time without Page Fault:

Substituting values in the above formula, we get

Effective memory access time without page fault
=09x{0+150ns}+0.1x {0+ (2+1) x 150 ns }
={09x150ns}+{0.1x450ns}
=135ns+45ns
=180 ns

Effective Access Time with Page Fault:

Substituting values in the above formula, we get-

Effective access time with page fault
=10%x {180 ns+8msec } + (1 —-10% x 180 ns
=8 x 10 msec + 180 ns
=8 x 107 sec + 180 ns
=800 ns + 180 ns

=980 ns
Effective Average Instruction Execution Time:
Effective Average Instruction Execution Time
=100 ns + 2 x Effective memory access time with page fault
=100 ns + 2 x 980 ns
=100 ns + 1960 ns
= 2060 ns

8. A demand paging system takes 100 time units to service a page fault and 300 time units to
replace a dirty page. Memory access time is 1 time unit. The probability of a page fault is p.
In case of a page fault, the probability of page being dirty is also p. If, it is observed that the
average access time is 3 time units. What is the value of p?

Solution:
Given,
- Page fault service time = 100 time units
- Time taken to replace dirty page = 300 time units
- Average memory access time = 1 time unit
- Page fault rate = p
- Probability of page being dirty =p
- Effective access time = 3 time units
Now, According to question,
3 time units = p x { 1 time unit + p x { 300 time units } + (1 — p) x { 100 time
units } } + (1 —p) x { 1 time unit }
3=px{1+300p+100-100p}+(1—p)
3=px{101+200p}+(1-p)
3=101p +200p*+1—p
3=100p + 200p? + 1
200p? + 100p -2 =0
On solving this quadratic equation, we get p = 0.019258

